Гены человека. Наследственные болезни и повреждения хромосом Как называются гены

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.

8.1. Ген как дискретная единица наследственности

Одним из фундаментальных понятий генетики на всех этапах ее развития было понятие единицы наследственности. В 1865 году основоположник генетики (науки о наследственности и изменчивости) Г. Мендель на основании результатов своих опытов на горохе пришел к заключению, что наследственный материал дискретен, т.е. представлен отдельными единицами наследственности. Единицы наследственности, которые отвечают за развитие отдельных признаков, Г.Мендель назвал «задатками». Мендель утверждал, что в организме по любому признаку имеется пара аллельных задатков (по одному от каждого из родителей), которые между собой не взаимодействуют, не смешиваются и не изменяются. Поэтому, при половом размножении организмов в гаметы попадает лишь один из наследственных задатков в «чистом» неизменном виде.

Позже предположения Г.Менделя о единицах наследственности получили полное цитологическое подтверждение. В 1909 году датский генетик В. Иогансен назвал «наследственные задатки» Менделя генами.

В рамках классической генетики ген рассматривается как функционально неделимая единица наследственного материала, определяющая формирование какого-либо элементарного признака.

Различные варианты состояния определенного гена, возникшие в результате изменений (мутаций), получили название «аллели» (аллельные гены). Количество аллелей гена в популяции может быть значительным, но у конкретного организма число аллелей определенного гена всегда равно двум – по числу гомологичных хромосом. Если в популяции количество аллелей какого-либо гена больше двух, то такое явление получило название «множественного аллелизма».

Гены характеризуются двумя противоположными по биологическому значению свойствами: высокой стабильностью своей структурной организации и способностью к наследственным изменениям (мутациям). Благодаря этим уникальным свойствам обеспечивается: с одной стороны – устойчивость биологических систем (неизменяемость в ряде поколений), а с другой – процесс их исторического развития, формирования адаптаций к условиям окружающей среды, т.е. эволюция.

8.2. Ген как единица генетической информации. Генетический код.

Еще Аристотель более 2500 лет тому высказал предположение о том, что гаметы – это отнюдь не миниатюрные варианты будущего организма, а структуры, содержащие информацию о развитии эмбрионов (хотя он признавал только исключительно важность яйцеклетки в ущерб сперматозоиду). Однако развитие этой идеи в современных исследованиях стало возможным лишь после 1953 года, когда Дж. Уотсон и Ф. Крик разработали трехмерную модель строения ДНК и тем самым создали научные предпосылки для раскрытия молекулярных основ наследственной информации. С этого времени началась эра современной молекулярной генетики.

Развитие молекулярной генетики привело к раскрытию химической природы генетической (наследственной) информации и наполнило конкретным смыслом представление о гене как единици генетической информации.

Генетическая информация – информация о признаках и свойствах живых организмов, заложенная в наследственных структурах ДНК, которая реализуется в онтогенезе через синтез белка. Наследственную информацию, как программу развития организма, каждое новое поколение получает от предков в виде совокупности генов генома. Единицей наследственной информации является ген, который представляет собой функционально неделимый участок ДНК со специфической последовательностью нуклеотидов, определяющей последовательность аминокислот определенного полипептида или нуклеотидов РНК.

Наследственная информация о первичной структуре белка записана в ДНК с помощью генетического кода.

Генетический код – система записи генетической информации в молекуле ДНК (РНК) в виде определенной последовательности нуклеотидов. Этот код служит ключом для перевода последовательности нуклеотидов в и-РНК в последовательность аминокислот полипептидной цепи при ее синтезе.

Свойства генетического кода:

1. Триплетность – каждая аминокислота кодируется последовательностью из трех нуклеотидов (триплетом или кодоном)

2. Вырожденность – большинство аминокислот шифруется более чем одним кодоном (от 2 до 6). В ДНК или РНК имеется 4 различных нуклеотида, которые теоретически могут образовывать 64 разных триплета (4 3 = 64) для кодирования 20 аминокислот, входящих в состав белков. Этим и объясняется вырожденность генетического кода.

3. Неперекрываемость – один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов.

4. Специфичность (однозначность) – каждый триплет кодирует только одну аминокислоту.

5. Код не имеет знаков препинания. Считывание информации с и-РНК при синтезе белка всегда идет в направлении 5 , -- 3 , в соответствии с последовательностью кодонов иРНК. Если произойдет выпадение одного нуклеотида, то при считывание его место займет ближайший нуклеотид из соседнего кода, из-за чего изменится аминокислотный состав в молекуле белка.

6. Код универсален для всех живых организмов и вирусов: одинаковые триплеты кодируют одинаковые аминокислоты.

Универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов

Однако, универсальность генетического кода не является абсолютной. В митохондриях ряд кодонов имеет другой смысл. Поэтому иногда говорят о квазиуниверсальности генетического кода. Особенности генетического кода митохондрий свидетельствует о возможности его эволюционирования в процессе исторического развития живой природы.

Среди триплетов универсального генетического кода три кодона не кодируют аминокислоты и определяют момент окончания синтеза данной полипептидной молекулы. Это так называемые «nonsens» кодоны (стоп-кодоны или терминаторы). К ним относятся: в ДНК – АТТ, АЦТ, АТЦ; в РНК – УАА, УГА, УАГ.

Соответствие нуклеотидов в молекуле ДНК порядку аминокислот в молекуле полипептида получило название коллинеарности. Экспериментальное подтверждение коллинеарности сыграло решающую роль в расшифровке механизма реализации наследственной информации.

Значение кодонов генетического кода приведены в таблице 8.1.

Табл.8.1. Генетический код (кодоны иРНК для аминокислот)

С помощью этой таблицы по кодонам иРНК можно определить аминокислоты. Первый и третий нуклеотиды берут из вертикальных столбиков, расположенных справа и слева, а второй – с горизонтального. В месте перессичения условных линий содержится информация про соответствующую аминокислоту. Отметим, что в таблице приводится триплеты и-РНК, а не ДНК.

Структурно - функциональная организация гена

Молекулярная биология гена

Современное представление о строении и функции гена формировалось в русле нового направления, которое Дж.Уотсон назвал молекулярной биологией гена (1978)

Важным этапом в изучении структурно – функциональной организации гена были работы С. Бензера в конце 1950-хх годов. Они доказали, что ген представляет собой нуклеотидную последовательность, которая может изменятся в результате рекомбинаций и мутаций. Единицу рекомбинации С.Бензер назвал реконом, а еденицу мутации – мутоном. Экспериментально установлено, что мутон и рекон соответствуют одной паре нуклеотидов. Единицу генетической функции С. Бензер назвал цистроном.

В последние годы стало известно, что ген имеет сложное внутренее строение, а отдельные его части обладают разными функциями. В гене можно выделить последовательность нуклеотидов гена, которая определяет строение полипептида. Эта последовательность называется цистроном.

Цистрон – это последовательность нуклеотидов ДНК, которая определяет отдельную генетическую функцию полипептидной цепи. Ген может быть представлен одним или несколькими цистронами. Сложные гены содержащие в себе несколько цистронов называются полицистронными .

Дальнейшее развитие теории гена связано с выявлением различий в организации генетического материала у организмов далеких друг от друга в таксономическом отношении, которыми являются про- и эукариоты.

Структура генов прокариот

У прокариот, типичными представителями которых являются бактерии, большинство генов представлены непрерывными информативными участками ДНК, вся информация которых используется при синтезе полипептида. У бактерий гены занимают 80-90% ДНК. Главная особенность генов прокариот – это их объединение в группы или опероны.

Оперон – это группа следующих подряд структурных генов, находящихся под контролем одного регуляторного участка ДНК. Все сцепленые гены оперона кодируют ферменты одного метаболического пути (например, расщепление лактозы). Такая общая молекула иРНК называется полицистронной. Только некоторые гены прокариот транскрибируются индивидуально. Их РНК называется моноцистронной.

Организация по типу оперона позволяет бактериям быстро переключать метаболизм с одного субстрата на другой. Бактерии не синтезируют ферменты определенного метаболического пути в отсутствии необходимого субстрата, но способны начать их синтезировать при появлении субстрата.

Структура генов эукариот

Большинство генов эукариот (в отличии от генов прокариот) имеют характерную особенность: содержат не только кодирующие структуру полипептида участки – экзоны, но и некодирующие – интроны. Интроны и экзоны чередуются между собой, что придает гену прерывистую (мозаичную) структуру. Количество интронов в генах варьиирует от 2-х до десятков. Роль интронов до конца неясна. Полагают, что они учавствуют в процессах рекомбинации генетического материала, а также в процессах регуляции экспресии (реализации генетической информации) гена.

Благодаря экзонно – интронной организации генов создаются предпосылки для альтернативного сплайсинга. Альтернативний сплайсинг- процесс «вырезания» разных интронов из первичного РНК-транскрипта в результате чего на основе одного гена могут синтезироватся разные белки. Явление альтернативного сплайсинга имеет место у млекопитающих при синтезе различних антител на основе иммуноглобулиновых генов.

Дальнейшие исследование тонкой структуры генетического материала еще больше осложнило четкость определения понятия «ген». В геноме эукариот были обнаружены обширные регуляторные области имеющие различные участки, которые могут располагатся за пределами едениц трансскрипции на расстоянии в десятки тысяч пар нуклеотидов. Структуру эукариотического гена, включающую транскрибируемые и регуляторные области, можно представить следующие образом.

Рис 8.1. Структура эукариотического гена

1 – энхансеры; 2 – сайленсеры; 3 – промотор; 4 – экзоны; 5 – интроны; 6 – участки экзонов, кодирующие нетранслируемые области.

Промотор – участок ДНК для связывания с РНК – полимеразой и образование комплекса ДНК-РНК полимеразы для запуска синтеза РНК.

Энхансеры - усилители транскрипции.

Сайленсеры – ослабители транскрипции.

В настоящее время ген (цистрон) рассматривается как функционально неделимая единица наследственного мастерства, определяющая развитие какого – либо признака или свойства организма. С позиции молекулярной генетики ген представляет собой участок ДНК (у некоторых вирусов РНК), который несет информацию о первичной структуре полипептида, молекулы транспортной и рибосомальной РНК.

В диплоидных клетках человека примерно 32000 пар генов. Большинство генов в каждой клетке «молчит». Набор активных генов зависит от типа ткани, периода развития организма, полученных внешних или внутренних сигналов. Можно сказать, что в каждой клетке «звучит» свой акорд генов, определяя спектр синтезируемых РНК, белков и, соответственно, свойства клетки.

Структура генов вирусов

Вирусы имеют структуру гена, отражающую генетическую структуру клетки - хозяина. Так, гены бактериофагов собраны в опероны и не имеют интронов, а вирусы эукариот имеют интроны.

Характерная особенность вирусных геномов – это явление «перекрывающихся» генов («ген в гене»). В «перекрывающихся» генах каждый нуклеотид принадлежит одному кодону, но имеются разные рамки считывание генетической информации с одной и той же нуклеотидной последовательности. Так, у фага φ Х 174 имеется участок молекулы ДНК, который входит в состав сразу трех генов. Но соответствующие этим генам последовательности нуклеотидов прочитывается каждая в своей системе отсчета. Поэтому нельзя говорить о «перекрывании» кода.

Такая организация генетического материала («ген в гене») расширяет информационные возможности сравнительно небольшого по величине генома вирусов. Функционирование генетического материала вирусов происходит по-разному в зависимости от структуры вируса, но всегда с помощью ферментной системы клетки хозяина. Различные способы организации генов у вирусов, про- и эукариотов представлены на рис 8.2.

Функционально – генетическая классификация генов

Существует несколько классификаций генов. Так, например, выделяют аллельные и неаллельные гены, летальные и полулетальные, гены «домашнего хозяйства», «гены роскоши» и т.д.

Гены «домашнего хозяйства» - набор активных генов, необходимых для функционирования всех клеток организма независимо от типа ткани, периода развития организма. Эти гены кодируют ферменты транскрипции, синтеза АТФ, репликации, репарации ДНК и др.

Гены «роскоши» имеют избирательную активность. Их функционирование специфично и зависит от типа ткани, периода развития организма, полученных внешних или внутренних сигналов.

Исходя из современных представлений о гене как функционально неделимой единице наследственного материала и системной организации генотипа все гены принципиально можно разделить на две группы: структурные и регуляторные.

Регуляторные гены – кодируют синтез специфических белков, влияющих на функционирование структурных генов таким образом, что в клетках разной тканевой принадлежности синтезируются необходимые белки и в необходимых количествах.

Структурными называются гены, которые несут информацию о первичной структуре белка, рРНК или тРНК. Гены, кодирующие белки, несут информацию о последовательности аминокислот определенных полипептидов. С этих участков ДНК транскребируется иРНК, которая служит матрицей для синтеза первичной структуры белка.

Гены рРНК (выделяют 4 разновидности) содержат информацию о последовательности нуклеотидов рибосомальных РНК и обуславливают их синтез.

Гены тРНК (более 30 разновидностей) несут информацию о строении транспортных РНК.

Структурные гены , функционирование которых тесно связано со специфическими последовательностями в молекуле ДНК, называемыми регуляторными участками, подразделяются на:

· независимые гены;

· повторяющиеся гены;

· кластеры генов.

Независимые гены – это гены, транскрипция которых не связана с транскрипцией других генов в рамках транскрипционной еденицы. Их активность может регулироваться экзогенными веществами, например, гормонами.

Повторяющиеся гены присутствуют в хромосоме в виде повторов одного гена. Ген рибосомной 5-S-РНК повторяется много сотен раз, причем повторы располагаются тандемом, т. е. следуя вплотную друг за другом без промежутков.

Кластеры генов – это локализованные в определенных участках (локусах) хромосомы группы разных структурных генов с родственными функциями. Кластеры тоже часто присутствуют в хромосоме в виде повторов. Например, кластер гистоновых генов повторяется в геноме человека 10-20 раз, обазуя тандемную групу повторов.(рис. 8.3.)

Рис.8.3. Кластер гистоновых генов

За редким исключением кластеры транскрибируются как одно целое – в виде одной длинной пре-мРнк. Так пре-мРНК кластера гистоновых генов содержит информацию про все пять гистоновых белков. Это ускоряет синтез гистоновых белков, которые принимают участие в формировании нуклеосомной структуры хроматина.

Существуют также сложные кластеры генов, которые могут кодировать длинные полипептиды с несколькими ферментативными активностями. Например, один из генов NeuraSpora grassa кодирует полипептид с молекулярной масой 150000 дальтон, который отвечает за 5 последовательных этапов в биосинтезе ароматических аминокислот. Полагают, что полифункциональные белки имеют несколько доменов – конформационно ограниченных полуавтономных образований в полипептидной цепи, выполняющих специфические функции. Открытие полуфункциональных белков дало основание полагать, что они являются одним из механизмов плейотропного действия одного гена на формирование нескольких признаков.

В кодирующей последовательности этих генов могут вклиниваться некодирующие, называемые интронами. Кроме того между генами могут находится участки спейсерной, и сателитной ДНК (рис.8.4).

Рис.8.4. Структурная организация нуклеотидных последовательностей (генов) в ДНК.

Спейсерная ДНК располагается между генами и не всегда транскрибируется. Иногда участок такой ДНК между генами (так называемый спейсер) содержит какую-то информацию, относящуюся к регуляции транскрипции, но он может представлять собой и просто короткие повторяющиеся последовательности избыточной ДНК, роль которой остается неясной.

Сателитная ДНК содержит большое количество групп повторяющихся нуклеотидов, которые не имеют смысла и не транскрибируются. Эта ДНК часто располагается в области гетерохроматина центромер митотических хромосом. Одиночные гены среди сателитной ДНК имеет регулирующие и усиливающие действие на структурные гены.

Большой теоритический и практический интерес для молекулярной биологии и медицинской генетики представляет микро- и минисателитные ДНК.

Микросателитная ДНК – короткие тандемные повторы из 2-6, (чаще из 2-4) нуклеотидов, которые получили название STR. Наиболее распространенными являются нуклеотидные ЦА- повторы. Количество повторов может существенно различатся у разных людей. Микросателиты находятся преимущественно в некоторых участках ДНК и насследуются по законам Менделя. Ребенок получают одну хромосому от матери, с определенным количеством повторов, другую от отца - с другим количеством повторов. Если рядом с геном ответственным за моногенное заболевание, или внутри гена расположен такой кластер микросателитов, то маркером патологического гена может быть определенное количество повторов по длине кластера. Эта особенность используется при непрямой диагностике генных болезней.

Минисателитная ДНК – тандемные повторы из 15-100 нуклеотидов. Они получили название VNTR – вариабельные по количеству тандемные повторы. Длина этих локусов также существено вариабельна у разных людей и может быть маркером (меткой) патологического гена.

Микро- и макросателитные ДНК используют:

1. Для диагностики генных болезней;

2. В судебно-медицинской экспертизе для идентификации личностей;

3. Для установления отцовства и в других ситуациях.

Наряду со структурными и регуляторными повторяющимися последовательностями, функции которых неизвестны, обнаружены мигрирующие нуклеотидные последовательности (транспозоны, мобильные гены), а также так называемые псевдогены у эукариот.

Псевдогены – нефункционирующие последовательности ДНК, которые сходные с функционирующими генами.

Вероятно, они произошли путем дупликации, а неактиаными копии стали в результате мутаций, нарушивших какие-либо стадии экспрессии.

По одной из версий псевдогены являются «эволюционным резервом»; по-другой – представляют собой «тупики эволюции», побочный эффект перестроек некогда функционирующих генов.

Транспозоны - структурно и генетически дискретные фрагменты ДНК, способные перемещаться от одной молекулы ДНК к другой. Впервые предсказаны Б.Мак-Клинток (рис. 8) в конце 40-х годов XX века на основе генетических экспериментов на кукурузе. Изучая природу окраски зерен кукурузы она сделала предположение, что существуют так званые мобильные („прыгающее”) гены, которые могут перемещаться по геному клетки. Пребывая по соседству с геном ответственным за пигментацию зерен кукурузы мобильные гены блокируют его работу. В дальнейшем транспозоны были выявлены у бактерий и было установлено, что они ответственны за устойчивость бактерий к различным токсическим соединениям.


Рис. 8.5. Барбара Мак- Клинток Впервые предсказала о существовании мобильных («прыгающих») генов, способных перемещаться по геному клеток.

Мобильные генетические элементы выполняют такие функции:

1. кодируют белки, ответственные за их перемещение и репликацию.

2. вызывают многие наследственные изменения в клетках, вследствии чего образуется новый генетический материал.

3. приводит к образованию раковых клеток.

4. встраиваясь в различные участки хромосом, они инактивируют или усиливают экспрессию клеточных генов,

5. является важным фактором биологической эволюции.

Современное состояние теории гена

Современные теории гена сформирована благодаря переходу генетики на молекулярный уровень анализа и отражает тонкую структурно-функциональную организацию единиц насследственности. Основные положения этой теории следующие:

1) ген(цистрон) – функциональная неделимая еденица наследственного материала (ДНК у организмов и РНК у некоторых вирусов), определяющая проявление наследственного признака или свойства организма.

2) Большинство генов существует в виде двух или большего числа альтернативных (взаимоисключающих) вариантов аллелей. Все аллели данного гена локализуются в одной и той же хромосоме в определенном ее участке, которую назвали локусом.

3) Внутри гена могут происходить изменения в виде мутаций и рекомбинаций; минимальные размеры мутона и рекона равны одной паре нуклеотидов.

4) Существуют структурные и регуляторные гены.

5) Структурные гены несут информацию о последовательности аминокислот в определенном полипептиде и нуклеотидов в рРНК, тРНК

6) Регуляторные гены контролируют и направляют роботу структурных генов.

7) Ген не принимает непосредственного участия в синтезе белка, он является матрицей для синтеза различных видов РНК, которые непосредственно принимают участие в синтезе белка.

8) Существует соответствие (колиннеарность) между расположением триплетов из нуклеотидов в структурных генах и порядком аминокислот в молекуле полипептида.

9) Большинство мутаций гена не проявляются в фенотипе, так как молекулы ДНК способны к репарации (востановлению своей нативной структуры)

10) Генотип являет собой систему, которая состоит из дискретных едениц – геннов.

11) Фенотическое проявление гена зависит от генотипической среды, в которой находится ген, влияние факторов внешней и внутренней среды.

«Ген», «геном», «хромосома» – слова, которые знакомы каждому школьнику. Но представление об этом вопросе довольно обобщенное, так как для углубления в биохимические дебри требуются специальные знания и желание все это понимать. А оно, если и присутствует на уровне любопытства, то быстро пропадает под тяжестью изложения материала. Попробуем разобраться в хитросплетениях наследственной информации в научно-полярной форме.

Что такое ген?

Ген – это наименьшая структурная и функциональная частица информации о наследственности у живых организмов. По сути он представляет собой небольшой участок ДНК, в котором содержится знание об определенной последовательности аминокислот для построения белка либо функциональной РНК (с которой также будет синтезирован белок). Ген определяет те признаки, которые будут наследоваться и передаваться потомками дальше по генеалогической цепи. У некоторых одноклеточных организмов существует перенос генов, который не имеет отношения к воспроизведению себе подобных, он называется горизонтальным.

«На плечах» генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха.

Первый научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 году опубликовал свои наблюдения о результатах при скрещивании гороха. Наследственный материал, который он использовал, четко показывал закономерности передачи признаков, таких как цвет и форма горошин, а также цветки. Этот монах сформулировал законы, которые сформировали начало генетики как науки. Наследование генов происходит потому, что родители отдают своему чаду по половинке всех своих хромосом. Таким образом, признаки мамы и папы, смешиваясь, образуют новую комбинацию уже имеющихся признаков. К счастью, вариантов больше, чем живых существ на планете, и невозможно отыскать двух абсолютно идентичных существ.

Мендель показал, что наследст­венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен­ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по­следующим поколениям в мужских и женских га­метах, каждая из которых содержит по одной едини­це из каждой пары. В 1909 году датский ботаник Иогансен назвал эти единицы генами. В 1912 году генетик из Соединенных Штатов Америки Морган показал, что они находятся в хромосомах.

С тех пор прошло больше полутора веков, и исследования продвинулись дальше, чем Мендель мог себе представить. На данный момент ученые остановились на мнении, что информация, находящаяся в генах, определяет рост, развитие и функции живых организмов. А может быть, даже и их смерть.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс — икс) – это женщина, а если ХУ (икс — игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом, но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации — какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Источники человеческого разнообразия

Гены несут в себе планы (или «чертежи») как общих, присущих всем людям признаков, так и многочисленных индивидуальных различий. Они определяют видовые признаки, отличающие человека от других живых существ в таких областях, как размеры и форма тела, поведение и старение, обусловливая вместе с тем и те неповторимые особенности, которые отличают нас друг от друга. Исходя из этого, голубоглазого блондина весом 80 килограмм с немного оттопыренными ушами и заразительной улыбкой, виртуозно играющего джаз на тромбоне, можно считать единственным в своем роде.

Человеческая жизнь начинается с одной-единственной оплодотворенной клетки - зиготы. После того как сперматозоид проникает в яйцеклетку, пронуклеус яйцеклетки, содержащий 23 хромосомы (буквально - «окрашенные тела»), за несколько часов перемещается к ее центру. Здесь происходит его слияние с пронуклеусом сперматозоида, который также содержит 23 хромосомы. Таким образом, сформировавшаяся зигота содержит 23 пары хромосом (всего 46 хромосом), по половине от каждого из родителей, - количество, необходимое для того, что-5ы родился нормальный ребенок.

Зигота - первая клетка человеческого существа, появляющаяся в результате - оплодотворения.

После образования зиготы начинается процесс клеточного деления. В результате первого дробления появляются две дочерние клетки, идентичные по своей организации первоначальной зиготе. В ходе дальнейшего деления и дифференциации клеток каждая вновь образующаяся клетка содержит точно такое же количество хромосом, как и любая другая, то есть 46. Каждая хромосома состоит из множества генов, расположенных в виде цепочки. По оценкам специалистов, число генов в одной хромосоме доходит до десятков тысяч, а это значит, что во всех 16 хромосомах их набирается около миллиона (Kelly, 1986). Спустя девять месяцев после зачатия зигота превращается в новорожденного младенца с десятью триллионами клеток, организованных в органы и системы. По достижении взрослого состояния в его организме насчитывается уже более 300 триллионов клеток. Каждая 13 них содержит полный генетический код индивидуума.

Гены строятся из ДНК (дезоксирибонуклеиновой кислоты) - огромных размеров молекулы, состоящей из атомов углерода, водорода, кислорода, азота и фосфора. «В человеческом организме содержится столько молекул ДНК, что если вытянуть их в линию, длина ее превысит удвоенное расстояние от Земли до Луны в 20 тысяч раз» (Rugh & Shettles, 1971, p. 199). Структура ДНК напоминает длинную винтовую лестницу, боковые перила которой сделаны из чередующихся фосфатов и сахаров, а ступеньки - из четырех тиров азотистых оснований, попарно связанных закономерным образом. Порядок следования этих парных оснований меняется, и именно эти их вариации служат причиной того, что один ген отличается от другого. Одиночный ген представляет собой часть этой лестницы ДНК, длина которой может доходить до 2-х тысяч ступенек ее спирали (Kelly, 1986).

Уотсон и Крик (Watson, & Crick, 1953) предположили, что в тот момент, когда клетка готова к делению, спираль ДНК расплетается, и две длинные цепочки расходятся в разные стороны, отделяясь друг от друга за счет разрыва связей между парными азотистыми основаниями. Затем каждая цепочка, притягивая к себе из клетки новый материал, синтезирует вторую цепочку и образует новую молекулу изменение количества или структуры ДНК. Время от времени в этих длинных лентах нуклеиновой кислоты могут происходить мутации, или перестройки. В большинстве случаев подобные перестройки приводят к гибели белка (и, следовательно, клетки), но небольшое количество мутантов выживает и в дальнейшем оказывает влияние на организм.

Мутация - изменение количества или структуры ДНК, а следовательно, и генетического кода.

ДНК содержит генетический код, или план, регулирующий функционирование и развитие организма. Однако этот план, перечисляющий все объекты и точные сроки их строительства, заперт в ядре клетки и недоступен для тех ее элементов, которым предписано заниматься строительством организма. РНК (рибонуклеиновая кислота) - субстанция, образуемая из ДНК и схожая с ней, - выполняет функцию курьера между ядром и остальной частью клетки. Если ДНК - это «что» и «когда», то РНК - это «как» процесса развития. Более короткие цепочки РНК, являющиеся зеркальными отображениями участков молекулы ДНК, свободно перемещаются внутри клетки и служат катализатором образования новой ткани.

Вирусы

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты.

Большинство ретровирусов встроились в геном предков человека свыше 25 млн лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено.

Понятие "ген" возникло задолго до возникновения науки, его изучающей. Чешский естествоиспытатель, основатель современной генетики, Гргеор Мендель в 1865 г. анализируя опыты по скрещиванию гороха, пришел к выводу, что наследование признаков осуществляется дискретными частицами, которые он называл "зачатками" или наследственными "факторами". В 1868 году Чарльз Дарвин предложил "временную гипотезу" пангенеза, согласно которой все клетки организма отделяют от себя особые частицы, или геммулы, а из них, в свою очередь, образуются половые клетки.

Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин "панген" для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида.

В 1906 г. английским ученым У. Бетсоном было введено название науки - "генетика", а спустя три года, в 1909 г. , датский ученый В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза "ген" и заменить им неопределенное понятие "зачатка", "детерминанта", "наследственного фактора". При этом В. Иогансен подчеркивал, что "этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями". Он сразу же образовал ключевое производное понятие "генотип" для обозначения наследственной конституции гамет и зигот в противоположность фенотипу. Таким образом в генетику вошло понятие гена как элементарной единицы наследственности. В дальнейшем оно постоянно уточнялось благодаря многочисленным открытиям: была доказана локализация генов в хромосомах; выяснилось, что гены изменяются в результате мутаций; было разработано понятие об аллелях и их локализации в соответствующих локусах гомологичных хромосом. Во всех генетических исследованиях ген становится общепризнанной единицей наследственности.

Среди генетиков было всеобщим убеждение в неделимости гена. Они представляли себе ген как единое целое, как последнюю элементарную единицу наследственности. Но уже в начале 30-х годов возникло сомнение в том, что ген неделим. Первым сигналом в этом отношении положило открытие множественных аллелей, или серии множественных аллелей. Получилось так, что единый ген может изменяться, давая целый ряд мутаций, связанных с изменениями определенного признака.

У некоторых организмов, и прежде всего у дрозофилы, были открыты серии множественных аллелей, содержащих десятки разнообразных мутаций, а у рогатого скота обнаружена серия аллелей, включающая до 80 мутаций, т. е. в результате мутаций возникло 80 разных состояний одного локуса.

С начала 30-х годов начался новый этап в изучении гена. Разработкой его строения была занята лаборатория А. С. Серебровского. Работы А. С. Серебровского, затем Н. П. Дубинина показали, что ген имеет значительно более сложное строение, чем предполагали раньше.

Работы велись по изучению гена scute, локализованного в половой хромосоме дрозофилы. Этот ген определяет развитие щетинок на теле мухи. Различные аллельные мутации гена касались недоразвития щетинок на тех или иных определенных участках тела дрозофилы и различной степени редукции щетинок. При генетическом анализе этих мутаций, скрещивании их друг с другом выяснилось, что в гетерозиготе они ведут себя частично как аллельные гены, а частично как мутации независимых локусов хромосом. Таким образом, ген оказался сложной системой, в которой мутации ведут к изменению лишь отдельных его частей.

Название "множественные аллели" было заменено более удачным "ступенчатые аллели" и была сформулирована гипотеза о сложном строении гена. Ген в целом назван "базигеном", а мутировавшие аллели "трансгенами".

Дальнейшее развитие учения о строении гена связано с переходом методов генетических исследований с хромосомного на молекулярный уровень. Большое значение при этом имело использование в работах генетиков до того времени мало изученных микроорганизмов: бактерий и даже неклеточных форм - вирусов. Особенно большое значение в этих работах имели исследования бактериофагов из группы "Т", заражающих кишечную палочку.

В изучении природы гена особенно большое значение имели работы Бензера и ряда других исследователей, проведенные на бактериофагах и других объектах. В результате своих работ Бензер ввел три новых понятия:

  1. Ранее считали, что кроссинговер может происходить только между генами и, таким образом, ген - это элементарная единица генетической рекомбинации. Однако доказано, что рекомбинации происходят и внутри гена. Наименьшая единица рекомбинации названа реконом.
  2. Ранее считали ген единицей мутации. Однако было обнаружено, что изменения отдельных участков внутри сложного гена приводят к изменению его функции. Мельчайшая единица, способная к изменению, была названа мутоном.
  3. Ген считали единицей функции. Многочисленные исследования показали, что функция гена может изменяться в зависимости от того, расположены ли два мутантных аллеля сложного гена в одной хромосоме, а их нормальные аллели в гомологичной (цис-положение), или мутантные аллели расположены в двух гомологичных хромосомах (трансположение). Единицу функции предложено называть цистроном.

Параллельная работа биохимиков и генетиков показала, что наименьшая величина рекона и мутона близка к величине одного или нескольких нуклеотидов. Цистрон же гомологичен участку ДНК, "кодирующему" синтез определенного полипептида, и содержит тысячу и более нуклеотидов.

Функционально-генетическая классификация генов

Существует несколько классификаций генов (аллельные и неаллельные, летальные и полулетальные гены и др.). Характеристики гена как единицы функции наследственного материала и системный принцип организации генотипа отражены в функционально-генетической классификации наследственных задатков

Структурными называются гены, контролирующие развитие конкретных признаков. Продуктом первичной активности гена является либо иРНК и далее полипептид, либо рРНК и тРНК. Таким образом, структурные гены содержат информацию об аминокислотных или нуклеотидных последовательностях макромолекул. Структурные гены трех подгрупп, приведенных в классификации, отличаются степенью плейотропного действия, причем выраженная плейотропия отличает гены второй и третьей подгрупп, которые активно функционируют во всех клетках. При их мутациях наблюдаются разнообразные и обширные нарушения развития организма. Неслучайно поэтому эти гены представлены в генотипе в количестве нескольких десятков копий и образованы среднеповторяющимися последовательностями ДНК.

Гены-модуляторы смещают в ту или иную сторону процесс развития признака или другие генетические явления, например частоту мутирования структурных генов. Часть структурных генов выполняет одновременно и роль модуляторов (см. пример "эффекта положения"). Другие гены-модуляторы, по-видимому, лишены каких-либо иных генетических функций. Появление таких генов в эволюции имело большое значение. Благодаря плейотропному действию многие структурные гены, наряду с благоприятным и необходимым для нормального развития организма действием, оказывают и нежелательные эффекты, которые снижают жизнеспособность особи. Неблагоприятное действие их ослабляется генами-модуляторами.

К регуляторным относятся гены, координирующие активность структурных генов, контролирующие время включения различных локусов в процессе индивидуального развития в зависимости от типа клеток многоклеточного организма, а также от состояния среды.

Молекулярно-биологические представления о строении и функционировании генов

Идеи молекулярной биологии к настоящему времени проникли во все отрасли науки о жизни и определили главные тенденции развития теоретической, экспериментальной и прикладной биологии. Молекулярная биология складывалась в ходе исследований физико-химических свойств и биологической роли нуклеиновых кислот и белков. Основы ее были заложены работами по генетике вирусов и фагов, химической природе наследственного материала, механизму биосинтеза белка, биологическому коду, закономерностям ультраструктурной организации клетки. В связи с этим молекулярную биологию можно определить как область изучения закономерностей структуры и изменений информационных макромолекул и участия их в фундаментальных процессах жизнедеятельности.

В области генетики молекулярная биология вскрыла химическую природу вещества наследственности, показала физикохимические предпосылки хранения в клетке информации и точного копирования ее для передачи в ряде поколений. ДНК большинства биологических объектов (от млекопитающих до бактериофага) содержит равные количества нуклеотидов с пуриновыми (аденин, гуанин) и пиримидиновыми (тимин, цитозин) азотистыми основаниями. Это означает, что объединение молекул ДНК в двойную спираль осуществляется закономерно, в соответствии с принципом комплементарности - адениловый нуклеотид связывается с тимидиловым нуклеотидом, а гуаниловый с цитидиловым (рис. 53). Такая конструкция делает возможным полуконсервативный способ редупликации ДНК. Вместе с тем вдоль биспирали ДНК пары А - Т и Г - Ц располагаются случайным образом - А + Т ≠ Г + Ц. Следовательно, путем независимого комбинирования нуклеотидов, различающихся по азотистому основанию, по длине молекул ДНК удается записать разнообразную информацию, объем которой пропорционален количеству нуклеиновой кислоты в клетке.

Согласно молекулярно-биологическим представлениям ген как единица функционирования наследственного материала характеризуется сложным строением. Многие детали тонкой структуры гена остаются неизвестными. Вместе с тем успехи современной науки в этой области достаточно велики, чтобы можно было нарисовать принципиальную модель функционирующего гена.

Функциональная активность гена заключается в синтезе на молекуле ДНК молекул РНК или транскрипции (переписывании) биологической информации с целью ее использования для образования белка. Единицы транскрипции (транскриптоны) превышают по размерам структурные гены (рис. 54). Согласно одной из моделей транскиптона в клетках эукариот он состоит из неинформативной (акцепторной) и информативной зоны. Последняя образована структурными генами (цистронами), которые разделены вставками ДНК - спейсерами, не несущими информации об аминокислотных последовательностях белков. Неинформативная зона начинается геном-промотором (р), к которому присоединяется фермент РНК-полимераза, катализирующая реакцию ДНК-зависимого образования рибонуклеиновых кислот. Далее следуют акцепторные гены или гены-операторы (α 1 , α 2 и т. д.), связывающие регуляторные белки (r 1 , r 2 ит. д.), изменения которых "открывают" ДНК структурных генов (s 1 , s 2 и т. д.) для считывания информации. На транскриптоне синтезируется одна большая молекула РНК. Благодаря процессингу неинформативная ее часть разрушается, а информативная расщепляется на фрагменты, соответствующие отдельным структурным генам. Эти фрагменты в виде иРНК для синтеза конкретных полипептидов транспортируются в цитоплазму. Согласно приведенной модели в транскрипте находится несколько структурных генов. Группа этих генов образует функциональный блок и называется опероном. Функциональное единство оперонов зависит от наличия генов-операторов, которые воспринимают сигналы из метаболического аппарата цитоплазмы и активируют структурные гены.

Природа сигналов, регулирующих функцию генов, изучена у прокариот. Это белки, синтез которых контролируется особыми генами-регуляторами, действующими на гены-операторы. Активация структурных генов посредством генов-регуляторов и операторов представлена на схеме (рис. 55). В обычных условиях ген-регулятор активен и в клетке протекает синтез белка-репрессора, который связывается с геном-оператором и блокирует его. Это выключает из функции весь оперон.

Включение оперона происходит, если в цитоплазму проникают молекулы субстрата, для переваривания которого требуется возобновление синтеза соответствующего фермента. Субстрат присоединяется к репрессору и лишает его способности блокировать ген-оператор. В этом случае информация со структурного гена считывается и требуемый фермент образуется. В описанном примере субстрат играет роль индуктора (побудителя) синтеза "своего" фермента. Последний запускает биохимическую реакцию, в которой используется данный субстрат. По мере снижения его концентрации освобождаются молекулы репрессора, которые блокируют активность гена-оператора, что приводит к выключению оперона. У бактерий описана система регуляции, переводящая активные структурные гены в неактивное состояние в зависимости от концентрации в цитоплазме конечного продукта определенной биохимической реакции (рис. 56). При этом под генетическим контролем гена-регулятора образуется неактивная форма репрессора гена-оператора. Репрессор активируется в результате взаимодействия с конечным продуктом данной биохимической реакции и, блокируя ген-оператор, выключает соответствующий оперон. Синтез фермента, катализирующего образование вещества, активирующего репрессор, прекращается. Описанные системы регуляции функции структурных генов носят приспособительный характер. В первом примере синтез фермента запускается поступлением в клетку субстрата соответствующей реакции, во втором - образование фермента прекращается, как только исчезает потребность в синтезе определенного вещества.

Принципы регуляции генной активности у эукариот, по-видимому, сходны с таковыми у бактерий. Вместе с тем появление ядерной оболочки, усложнение генных взаимодействий в условиях диплоидности, необходимость тонкой корреляции генетических функций отдельных клеток многоклеточного организма повлекли за собой при переходе к эукариотическому типу клеточной организации усложнение регуляторно-генетических механизмов, генетико-биохимические и кибернетические основы которых во многом еще не выяснены. Можно предположить также, что в эволюции увеличилось число генов-операторов. Индукторами транскрипции многих структурных генов эукариот служат гормоны. Предполагается наличие генов-интеграторов, включающих в ответ на стимул одновременно "батареи генов". Генетическая система высших организмов отличается, по-видимому, большой гибкостью реакций на действие негенетических факторов. В подтверждение этого допущения рассмотрим ряд факторов. Так, некоторые структурные гены животных не являются непрерывными последовательностями кодонов, а составлены из фрагментов, которые прерываются неинформативными участками ДНК. Ген Р-полипептида гемоглобина мыши, например, прерывается вставкой из 550 пар нуклеотидов. Соответствующий этой вставке участок отсутствует в зрелой глобиновой иРНК, что говорит о его разрушении в ходе процессинга первичной транскрибированной РНК с воссоединением информационных фрагментов иРНК. Информационные участки таких генов получили название экзонов, "молчащие" - интронов, а процесс воссоединения информационных фрагментов иРНК - сплайсинга (сплавления). Количество ДНК в области нитронов в 5-10 раз выше, чем в области экзонов. Предполагается, что сплайсинг служит механизмом образования некоторых генов в момент их функциональной активности, т. е. на 1 уровне иРНК.

Известны также "блуждающие" структурные гены, положение которых в хромосоме меняется в зависимости от фазы жизненного цикла. Так, "тяжелые" и "легкие" полипептиды иммуноглобулинов состоят из константного (С) и вариабельного (Y) участков, синтез которых контролируется сцепленными, но разными генами. В зрелых плазматических клетках эти гены разделены нетранскрибируемой вставкой длиной в 1000 пар нуклеотидов. В клетках эмбрионов названная вставка во много раз длиннее. Таким образом в процессе клеточной дифференцировки изменяется взаиморасположение генов. Исследование механизмов регуляции генной активности и генных взаимодействий у эукариот представляет важнейшую область современной молекулярной биологии и генетики.

Свойства гена

Ген как единица функционирования наследственного материала имеет ряд свойств.

  1. Специфичность - уникальная последовательность нуклеотидов для каждого структурного гена, т.е. каждый ген кодирует свой признак;
  2. Целостность - как функциональная единица (программирование синтеза белка) ген неделим;
  3. Дискретность - в составе гена имеются субъединицы: мутон - субъединица, отвечающая за мутацию, рекон - отвечает за рекомбинаци. Минимальная их величина - пара нуклеотидов;
  4. Стабильность - ген, как дискретная единица наследственности отличается стабильностью (постоянством) - при отсутствии мутации он передается в ряду поколений в неизменном виде. Частота самопроизвольной мутации одного гена составляет примерно 1·10 -5 на поколение.
  5. Лабильность - устойчивость генов не абсолютная, они могут изменяться, мутировать;
  6. Плейотропия - множественный эффект отдельного гена (один ген отвечает за несколько признаков);

    Примером плейотропного эффекта гена у человека служит синдром Марфана. Хотя это наследственное заболевание зависит от присутствия в генотипе одного измененного гена, оно характеризуется в типичных случаях триадой признаков: подвывихом хрусталика глаза, аневризмой аорты, изменениями опорно-двигательного аппарата в виде "паучьих пальцев", деформированной грудной клеткой, высоким сводом стопы. Все перечисленные признаки являются сложными. По-видимому, в основе их лежит один и тот же дефект развития соединительной ткани.

    Так как продуктом функции гена наиболее часто является белок-фермент, выраженность плейотропного эффекта зависит от распространенности в организме биохимической реакции, которую катализирует фермент, синтезируемый под генетическим контролем данного гена. Распространенность поражений в организме в случае наследственного заболевания тем больше, чем выраженнее плейотропный эффект измененного гена.

Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных), может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Экспрессивность и пенетрантность определяются факторами среды (воздействием условий окружающей среды - модификационной изменчивостью) и влиянием других генов генотипа (комбинативная изменчивость).

  1. Экспрессивность - степень выраженности гена в признаке или степень фенотипического проявления гена.

    Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

  2. Пенетрантность - частота фенотипического проявления признака при наличии соответствующего гена (отношение (в процентах) числа особей, имеющих данный признак, к числу особей, имеющих данный ген);

    Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

Дискретной единицей наследственности у высших организмов является ген. Совокупность всех генов определенного биологического вида определяется термином геном (иногда данный термин относится к полной генетической системе отдельной клетки или конкретного организма). Ген в своем наиболее практическом понимании представляет собой строго определенный участок молекулы ДНК, последовательность которого заключает в себе всю информацию, необходимую для синтеза молекулы белка или РНК. Генетическая информация зашифрована посредством универсального для всех живых организмов генетического кода, представляющего собой набор нуклеотидных триплетов - кодонов. Каждый такой триплет (т.е. каждая последовательность из 3 нуклеотидов) кодирует синтез одной, строго определенной аминокислоты в составе белка.

Считывание кодонов в процессе передачи генетической информации происходит последовательно (принцип линейности генетического кода), и любой нуклеотид может входить в состав только одного кодона (принцип неперекрываемости генетического кода). Генетический код является вырожденным, т.е. допускает кодирование каждой из 20 аминокислот несколькими г.озможными комбинациями триплетов (всего таких комбинаций может быть 64). Расшифровка точной последовательности нуклеотидов определенного информационного участка гена позволяет однозначно идентифицировать последовательность аминокислот в составе соответствующего полипептидного участка белка и его размер. Полный гаплоидный геном человека (т.е. кодируемый одной смысловой нитью ДНК) включает, ориентировочно, около 30 000-40 000 генов.

Гены человека и других высших организмов имеют чрезвычайно сложную структурно-функциональную организацию и содержат различные по своей биологической роли нуклеотидные участки. Одни из них (экзоны) являются относительно короткими, представляют собой кодирующие последовательности и определяют аминокислотный состав белков; другие участки гена (интроны) являются обычно значительно более протяженными и не несут непосредственной информационной нагрузки. Окончательная роль интронов до настоящего времени не установлена; предполагается, что они могут иметь отношение к регуляции экспрессии генов и контролю тонких механизмов «считывания» генетической информации. В состав генов входят также особые регу-ляторные участки (промоторы, энхансеры, различные сигнальные последовательности), обеспечивающие инициацию, интенсивность и определенную временную последовательность процессов нуклеотидного синтеза на ДНК-матрице, а также модификацию промежуточных полинуклеотидных продуктов.
По ориентировочным оценкам , собственно кодирующие последовательности ДНК составляют не более 3-10% всего генома человека.

В любой клетке организма содержится полный набор генов, однако лишь небольшая их часть является функционально активной в каждой конкретной ткани, т.е. экспрессируется. Под экспрессией гена понимают реализацию записанной в нем генетической информации, приводящую к синтезу первичных молекулярных продуктов гена - РНК и белка. Именно временная и тканевая избирательность экспрессии генов определяет специфику дифференцировки и функционирования различных органов, тканей и клеток организма в онтогенезе.