Презентация по физике на тему радиоактивность. Презентация по обж на тему "естественная радиоактивность". Проникающая способность радиоактивного излучения


Радиоактивность -

Открытие - 1896 год

  • явление самопроизвольного превращения

неустойчивых ядер в устойчивые,

сопровождающееся испусканием

частиц и излучением энергии.


Исследования радиоактивности

Все химические элементы,

начиная с номера 83 ,

обладают радиоактивностью

1898 год –

открыты полоний и радий


Природа радиоактивного излучения

скорость до 1000000км/с


Виды радиоактивных излучений

  • Естественная радиоактивность;
  • Искусственная радиоактивность.

Свойства радиоактивных излучений

  • Ионизируют воздух;
  • Действуют на фотопластинку;
  • Вызывают свечение некоторых веществ;
  • Проникают через тонкие металлические пластинки;
  • Интенсивность излучения пропорциональна

концентрации вещества;

  • Интенсивность излучения не зависит от внешних факторов (давление, температура, освещенность, электрические разряды).






Защита от радиоактивных

излучений

Нейтроны вода, бетон, земля (вещества, имеющие невысокий атомный номер)

Рентгеновские лучи, гамма-излучение

чугун, сталь, свинец, баритовый кирпич, свинцовое стекло (элементы с высоким атомным номером и имеющие большую плотность)


Радиоактивные превращения

Правило смещения


Изотопы

1911 год, Ф.Содди

Существуют ядра

одного и того же химического элемента

с одинаковым числом протонов,

но различным числом нейтронов – изотопы.

Изотопы имеют одинаковые

химические свойства

(обусловлены зарядом ядра),

но разные физические свойства

(обусловлено массой).



Закон радиоактивного распада

Период полураспада Т

интервал времени,

в течение которого активность

радиоактивного элемента

убывает в два раза.






Радиоактивность вокруг нас (по данным Зеленкова А.Г.)


Методы регистрации ионизирующих излучений

Поглощенная доза излучения –

Отношение энергии ионизирующего

Излучения, поглощенной веществом,

к массе этого вещества.

1 Гр = 1 Дж/кг

Естественный фон на человека 0,002 Гр/год;

ПДН 0,05 Гр/год или 0,001 Гр/нед;

Смертельная доза 3-10 Гр за короткое время


Сцинтилляционный счетчик

В 1903 году У.Крукс

заметил, что частицы,

испускаемые радиоактивным

веществом, попадая на

покрытый сернистым

цинком экран, вызывает

его свечение.

ЭКРАН

Устройство было использовано Э.Резерфордом.

Сейчас сцинтилляции наблюдают и считают

с помощью специальных устройств.


Счетчик Гейгера

В наполненной аргоном трубке пролетающая

через газ частичка ионизирует его,

замыкая цепь между катодом и анодом

и создавая импульс напряжения на резисторе.


Камера Вильсона

1912 г.

Камера заполнена смесью аргона и азота с насыщенными

парами воды или спирта. Расширяя газ поршнем,

переохлаждают пары. Пролетающая частица

ионизирует атомы газа, на которых конденсируется пар,

создавая капельный след (трек).


Пузырьковая камера

1952 г.

Д.Глейзер сконструировал камеру, в которой можно

Исследовать частицы большей энергии, чем в камере

Вильсона. Камера заполнена быстро закипающей жидкостью

сжиженный пропан, гидроген). В перегретой жидкости

исследуемая частица оставляет трек из пузырьков пара.


Искровая камера

Изобретена в 1957 г. Заполнена инертным газом.

Плоскопараллельные пластины расположены близко

друг к другу. На пластины подается высокое напряжение.

При пролете частицы вдоль её траектории проскакивают

искры, создавая огненный трек.


Толстослойные фотоэмульсии

Пролетающая сквозь

фотоэмульсию заряженная

частица действует на

зерна бромистого

серебра и образует

скрытое изображение.

При проявлении

фотопластинки образуется

след - трек.

Преимущества: следы

не исчезают со временем

и могут быть тщательно

изучены.

Метод разработан

В 1958 году

Ждановым А.П. и

Мысовским Л.В.


Получение радиоактивных изотопов

Получают радиоактивные изотопы

в атомных реакторах и на ускорителях

элементарных частиц.

С помощью ядерных реакций можно

получить радиоактивные изотопы

всех химических элементов,

существующих в природе только

в стабильном состоянии.

Элементы под номерами 43, 61, 85 и 87

Вообще не имеют стабильных изотопов

И впервые были получены искусственно.

С помощью ядерных реакций получены

Трансурановые элементы,

начиная с нептуния и плутония

( Z = 93 - Z = 108)


Применение радиоактивных изотопов

Меченые атомы: химические свойства

Радиоактивных изотопов не отличаются

от свойств нерадиоактивных изотопов тех

же элементов. Обнаружить радиоактивные

изотопы можно по их излучению.

Применяют: в медицине, биологии,

криминалистике, археологии,

промышленности, сельском хозяйстве.




Класс: 11

Презентация к уроку





















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала

Цели урока: ввести и закрепить понятия радиоактивности, альфа-, бета-, гамма-излучения и периода полураспада; изучить правило смещения и закон радиоактивного распада.

Задачи урока:

а) образовательные задачи - объяснить и закрепить новый материал, познакомить с историей открытия явления радиоактивности;

б) развивающие задачи - активизировать мыслительную деятельность учащихся на уроке, реализовать успешное овладение новым материалом, развивать речь, умение делать выводы;

в) воспитательные задачи - заинтересовать и увлечь темой урока, создать личную ситуацию успеха, вести коллективный поиск по сбору материала о радиации, создать условия для развития у школьников умения структурировать информацию.

Ход урока

Учитель:

Ребята, предлагаю вам выполнить следующее задание. Найдите в списке слова, обозначающие явления: ион, атом, протон, электризация, нейтрон, проводник, напряжённость, электричество, диэлектрик, электроскоп, заземление, поле, оптика, линза, сопротивление, напряжение, вольтметр, амперметр, заряд, мощность, освещение, радиоактивность, магнит, генератор, телеграф, компас, намагничивание. Слайд №1.

Дайте определения этим явлениям. Для какого явления мы ещё не можем дать определение? Правильно, для радиоактивности. Слайд №2.
- Ребята, тема нашего занятия – радиоактивность.

На предыдущем уроке некоторые учащиеся получили задание – подготовить сообщения по биографиям ученых: Анри Беккереля, Пьера Кюри, Марии Склодовской-Кюри, Эрнеста Резерфорда. Ребята, как вы думаете, случайно ли именно об этих ученых сегодня должна пойти речь? Может, кто-то из вас уже что-то знает о судьбе и научных достижениях этих людей?

Дети предлагают свои варианты ответов.

Молодцы, вы очень хорошо осведомлены! А теперь давайте послушаем материал докладчиков.
Дети рассказывают об ученых (Приложение №1 о А.Беккереле, Приложение №2 о М.Склодовской-Кюри, Приложение №3 о П.Кюри) и показывают слайды № 3 (о А.Беккереле), № 4 (о М.Склодовской-Кюри), №5 (о П.Кюри).

Учитель:
- Сто лет назад, в феврале 1896г, французский физик Анри Беккерель обнаружил самопроизвольное излучение солей урана 238 U, однако он не понимал природы этого излучения.

В 1898г супруги Пьер и Мария Кюри открыли новые, ранее неизвестные элементы – полоний 209 Po и радий 226 Ra, у которых излучение, аналогичное излучению урана, было значительно более сильным. Радий – редкий элемент; чтобы получить 1 грамм чистого радия, надо переработать не менее 5 тонн урановой руды; его радиоактивность в несколько миллионов раз выше радиоактивности урана. Слайд №6.

Самопроизвольное излучение некоторых химических элементов было названо по предложению П.Кюри радиоактивностью, от латинского radio «излучать». Неустойчивые ядра превращаются в устойчивые. Слайд №7.

Химические элементы с номера 83 являются радиоактивными, то есть самопроизвольно излучают, причем, степень излучения не зависит от того, в состав какого соединения они входят. Слайд №8.

Изучением природы радиоактивного излучения занимался великий физик начала 20 века Эрнест Резерфорд. Ребята, давайте прослушаем сообщение о биографии Э.Резерфорда. Приложение №4, Слайд №9.

Что же представляет из себя радиоактивное излучение? Предлагаю вам самостоятельную работу с текстом: стр. 222 учебника Ф-11 Л.Э.Генденштейна и Ю.И.Дика.

Ребята, ответьте на вопросы:
1. Что представляют собой α-лучи? (α-лучи – это поток частиц, представляющих собой ядра гелия.)
2. Что представляют собой β-лучи? (β-лучи – это поток электронов, скорость которых близка к скорости света в вакууме.)
3. Что представляет собой γ-излучение? (γ-излучение – это электромагнитное излучение, частота которого превышает частоты рентгеновского излучения.)

Итак (Слайд №10), в 1899 г Эрнест Резерфорд обнаружил неоднородность излучения. Исследуя излучение радия в магнитном поле, он обнаружил, что поток радиоактивного излучения имеет сложную структуру: состоит из трех самостоятельных потоков, названных α-, β- и γ-лучами. При дальнейших исследованиях оказалось, что α-лучи представляют из себя потоки ядер атомов гелия, β-лучи – потоки быстрых электронов, а γ-лучи есть электромагнитные волны с малой длиной волны.

Но эти потоки различались еще и своими проникающими способностями. Слайды №11,12.

Превращение атомных ядер часто сопровождается испусканием α-, β-лучей. Если одним из продуктов радиоактивного превращения является ядро атома гелия, то такую реакцию называют α-распадом, если же – электрон, то β-распадом.

Эти два распада подчиняются правилам смещения, которые впервые сформулировал английский ученый Ф.Содди. Давайте посмотрим, как выглядят эти реакции.

Слайды №13 и №14 соответственно:

1. При α-распаде ядро теряет положительный заряд 2e и его масса убывает на 4 а.е.м. В результате α-распада элемент смещается на две клетки к началу периодической системы Менделеева:


2. При β-распаде из ядра вылетает электрон, что увеличивает заряд ядра на 1е, масса же остается почти неизменной. В результате β-распада элемент смещается на одну клетку к концу периодической таблицы Менделеева.

Кроме альфа- и бета-распадов радиоактивность сопровождается гамма-излучением. При этом из ядра вылетает фотон. Слайд №15.

3. γ-излучение – не сопровождается изменением заряда; масса же ядра меняется ничтожно мало.

Давайте попробуем решить задачи на написание ядерных реакций: №20.10; №20.12; №20.13 из сборника заданий и самостоятельных работ Л.А.Кирика, Ю.И. Дика.
- Ядра, которые возникли в результате радиоактивного распада, в свою очередь также могут быть радиоактивны. Возникает цепочка радиоактивных превращений. Ядра, связанные с этой цепочкой, образуют радиоактивный ряд или радиоактивное семейство. В природе существует три радиоактивных семейства: урана, тория и актиния. Семейство урана заканчивается свинцом. Измеряя количество свинца в урановой руде, можно определить возраст этой руды.

Резерфорд опытным путём установил, что активность радиоактивных веществ убывает с течением времени. Для каждого радиоактивного вещества существует интервал времени, на протяжении которого активность убывает в 2 раза. Это время называется периодом полураспада Т.

Как же выглядит закон радиоактивного распада? Слайд №16.

Закон радиоактивного распада установлен Ф. Содди. По формуле находят число не распавшихся атомов в любой момент времени. Пусть в начальный момент времени число радиоактивных атомов N 0 . По истечении периода полураспада их будет N 0 /2. Спустя t = nT их останется N 0 /2 п.

Период полураспада – основная величина, определяющая скорость радиоактивного распада. Чем меньше период полураспада, тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет разные значения. Слайд №17.

Одинаково опасными являются как быстро, так и медленно распадающиеся ядра. Быстро распадающиеся ядра интенсивно излучают за малый промежуток времени, а медленно распадающиеся ядра радиоактивны на большом интервале времени. С различными уровнями радиации человечество встречается как в естественных условиях, так и в искусственно созданных обстоятельствах. Слайд № 18.

Радиоактивность имеет как отрицательное, так и положительное значение для всего живого на планете Земля. Ребята, давайте посмотрим маленький кинофрагмент о значении радиации для жизни. Слайд №19.

И в заключение нашего урока давайте решим задачу на нахождение периода полураспада. Слайд №20.

Домашнее задание:

  • §31 по учебнику Генденштейна Л.Э и Дика Ю.И., ф-11;
  • с/р №21 (н.у.), с/р №22 (н.у.) по сборнику задач Кирика Л.А. и Дика Ю.И., ф-11.

Методическое обеспечение

1. Л.А.Кирик, Ю.И. Дик, Методические материалы, Физика – 11, издательство «ИЛЕКСА»;
2. Э.Генденштейн, Ю.И. Дик, Физика – 11, издательство «ИЛЕКСА;
3. Л.А.Кирик, Ю.И. Дик, Сборник заданий и самостоятельных работ для 11 класса, издательство «ИЛЕКСА»;
4. Компакт-диск с электронным приложением «ИЛЕКСА», издательство «ИЛЕКСА».

РАДИОАКТИВНОСТЬ урок физики 11 класс

Слайд 2

РАДИОАКТИВНОСТЬ

Слайд 3

Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности. Примерно с середины XIX стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру и что в их состав входят электрически заряженные частицы. Наиболее ярким свидетельством сложногостроения атома явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896 году.

Слайд 4

Уран, торий и некоторые другие элементы обладают свойством непрерывно и без каких-либо внешних воздействий (т.е. под влиянием внутренних причин) испускать невидимое излучение, которое подобно рентгеновскому излучению способно проникать сквозь непрозрачные экраны и оказывать фотографическое и ионизационное действие. Свойство самопроизвольного испускания подобного излучения получило название радиоактивности.

Слайд 5

Радиоактивность являлась привилегией самых тяжелых элементов периодической системы Д.И.Менделеева. Среди элементов, содержащихся в земной коре, радиоактивными являются все, с порядковыми номерами более 83, т. е. расположенные в таблице Менделеева после висмута.

Слайд 6

В 1898 году французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо более сильной степени, чем уран и торий. Так были открытыдва неизвестных ранее радиоактивных элемента – полоний и радий.

Слайд 7

Ученые пришли к выводу, что радиоактивность представляет собой самопроизвольный процесс, происходящий в атомах радиоактивных элементов. Теперь это явления определяют как самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента; при этом происходит испускание электронов, протонов, нейтронов или ядер гелия (α-частиц).

Слайд 8

Мария и Пьер Кюри в лаборатории СУПРУГИ КЮРИ За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств.

Слайд 9

Диплом лауреатов Нобелевской премии, врученный Пьеру и Марии Кюри В 1903 году за открытия в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике.

Слайд 10

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся Резерфорд. В 1898 г. Резерфорд приступил к изучению явления радиоактивности. Первым его фундаментальным открытием в этой области было обнаружение неоднородности излучения, испускаемого радием.

Слайд 11

Опыт Резерфорда

Слайд 12

Виды радиоактивного излучения a-лучи - лучи b- лучи

Слайд 13

 - частица– ядро атома гелия. - лучи обладают наименьшей проникающей способностью. Слой бумаги толщиной около 0,1 мм для них уже не прозрачен. Слабо отклоняются в магнитном поле. У - частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Резерфорд доказал, что при радиоактивном a - распаде образуется гелий.

Слайд 14

β - частицыпредставляют собой электроны, движущиеся со скоростями, очень близкими к скорости света. Они сильно отклоняются как в магнитном, так и в электрическом поле. β – лучи гораздо меньше поглощаются при прохождении через вещество. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров.

Слайд 15

 - лучипредставляют собой электромагнитные волны. По своим свойствам очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Не отклоняются магнитным полем. Обладают наибольшей проникающей способностью. Слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении  – лучей через такой слой свинца их интенсивность убывает лишь вдвое.

Слайд 16

Испуская α – и  - излучение, атомы радиоактивного элемента изменяются, превращаясь в атомы нового элемента. В этом смысле испускание радиоактивных излучений называют радиоактивным распадом. Правила, указывающие смещение элемента в периодической системе, вызванное распадом, называются правилами смещения.

Слайд 17

Виды радиоактивного распада a–распад -распад b-распад

Слайд 18

 – распадомназывается самопроизвольный распад атомного ядра на  – частицу (ядро атома гелия) и ядро-продукт. Продукт a – распадаоказывается смещенным на две клетки к началу периодической системы Менделеева.

Слайд 19

 – распадомназывается самопроизвольное превращение атомного ядра путем испускания электрона. Ядро – продукт бета-распада оказывается ядром одного из изотопов элемента с порядковым номером в таблице Менделеева на единицу большим порядкового номера исходного ядра.

Слайд 20

– излучение не сопровождается изменением заряда; масса же ядра меняется ничтожно мало. 

Слайд 21

Радиоактивный распад Радиоактивный распад – радиоактивное (самопроизвольное) превращение исходного (материнского) ядра в новые (дочерние) ядра. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в два раза.

Слайд 22

Закон радиоактивного распада Период полураспада Т – это время, в течение которого распадается половина наличного числа радиоактивных атомов. N0 – число радиоактивных атомов в начальный момент времени. N – число нераспавшихся атомов в любой момент времени.

Слайд 23

Используемая литература:

Г.Я. Мякишев, Б.Б. Буховцев Физика: учебник для 11 класса общеобразовательных учреждений. – М.: Просвещение, 2000 А.В. Перышкин, Е.М. Гутник Физика: учебник для 9 класса общеобразовательных учреждений. – М.: Дрофа, 2004 Е. Кюри Мария Кюри. – Москва, Атомиздат, 1973

Посмотреть все слайды

ТЕМА УрокА «открытие Радиоактивности.

Альфа-, бетА - и гамма-излучения.»

Цели урока.

Образовательные – расширение представлений учащихся о физической картине мира на примере явления радиоактивности; изучить закономерности

Развивающие – продолжить формирование умений: теоретическому методу исследования физических процессов; сравнивать, обобщать; устанавливать связи между изучаемыми фактами; выдвигать гипотезы и обосновывать их.

Воспитывающие – на примере жизни и деятельности Марии и Пьера Кюри показать роль ученых в развитии науки; показать неслучайность случайных открытий; (мысль: ответственность ученого, первооткрывателя за плоды своих открытий),продолжить формирование познавательных интересов, навыков коллективной, в сочетании с самостоятельной работой.

Дидактический тип урока: изучение и первичное закрепление новых знаний.

Форма проведения урока: традиционная

Необходимое оборудование и материалы :

Знак радиоактивной опасности; портреты ученых, компьютер, проектор, презентация, рабочая тетрадь для обучающихся, периодическая таблица Менделеева.

Методы:

  • информационный метод (сообщения обучающихся)
  • проблемный

Оформление: на доске написано тема и эпиграф урока.

«Ничего не надо бояться – надо лишь понять неизвестное»

Мария Склодовская- Кюри.


КОНСПЕКТ УРОКА

Мотивация обучающихся

Сконцентрировать внимание обучающихся на изучаемом материале, заинтересовать их, показать необходимость и пользу изучения материала. Радиация – это необычные лучи, которые глазом не видно и вообще нельзя никак почувствовать, но которые могут проникать даже через стены и пронизывать человека.

Этапы урока .

  • Организационный этап.
  • Этап подготовки к изучению новой темы, мотивация и актуализация опорных знаний.
  • Этап усвоения новых знаний.
  • Этап закрепления новых знаний.
  • Этап подведения итогов, информация о домашнем задании.
  • Рефлексия.
  • . Организационный момент

Сообщение темы и цели урока

2.Этап подготовки к изучению новой темы

Актуализация наличных знаний обучающихся в форме проверки домашнего задания и беглого фронтального опроса обучающихся.

Показываю знак радиоактивной опасности и задаю вопрос: « Что означает этот знак? В чем опасность радиоактивного излучения?»

3.Этап усвоения новых знаний (25 мин)

Радиоактивность появились на земле со времени ее образования, и человек за всю историю развития своей цивилизации находился под влиянием естественных источников радиации. Земля подвержена радиационному фону, источниками которого служат излучения Солнца, космическое излучение, излучение от залегающих в Земле радиоактивных элементов.

Что же такое радиация? Как она возникает? Какие виды радиации существуют? И как от нее защититься?

Слово «радиация» происходит от латинского radius и обозначает луч. В принципе радиация – это все виды существующих в природе излучений – радиоволны, видимый свет, ультрафиолет и так далее. Но излучения бывают различными, некоторые из них полезны, некоторые вредны. Мы в обычной жизни привыкли словом радиация называть вредное излучение, возникающее вследствие радиоактивности некоторых видов вещества. Разберем, как на уроках физики объясняют явление радиоактивности

Открытие радиоактивности Анри Беккерелем .

Возможно, об Антуане Беккереле осталась бы лишь память как о весьма квалифицированном и добросовестном экспериментаторе, но не более, если бы не то, что произошло 1 марта в его лаборатории.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Он завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Беккерель думал, что излучение урана возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану. Затем подобное качество было обнаружено и у тория.

Беккерель Антуан Анри французский физик. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. (1903, совместно с П. Кюри и М. Склодовской-Кюри).

Открытие радия и полония.

В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий, Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. Полоний (Po-84) был назван в честь родины Марии – Польши. Радий (Ra-88)– лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации.

Недаром Маяковский сравнивал поэзию с добычей радия:

«Поэзия – та же добыча радия. В грамм добыча, в год труды. Изводишь единого слова ради тысячи тонн словесной руды.»

В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике.

РАДИОАКТИВНОСТЬ –

Это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра, испуская при этом различные частицы:

всякий самопроизвольный радиоактивный распад экзотермичен, то есть происходит с выделением тепла.

Сообщение обучающегося

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г. Заключенное в свинцовый гроб тело Марии Склодовской-Кюри до сих пор излучает радиоактивность с интенсивностью 360 беккерель/М3 при норме около 13 бк/М3... Ее похоронили вместе с мужем…

Сообщение обучающегося

Пьер Кюри - французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, исследовал радиоактивное излучение. Ввел термин «радиоактивность». Нобелевская премия (1903, совместно со Склодовской-Кюри и А. А. Беккерелем).

Сложный состав Радиоактивного излучения

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

В результате опыта, проведенного под руководством английского физика, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав.

Резерфорд Эрнст (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совместно с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908).

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Препарат радия помещали в свинцовый контейнер с отверстием. Напротив отверстия помещали фотопластинку. На излучение действовало сильное магнитное поле.

Почти 90 % известных ядер нестабильны. Радиоактивные ядра могут испускать частицы трех видов: положительно заряженные (α-частицы – ядра гелия), отрицательно заряженные (β-частицы – электроны) и нейтральные (γ-частицы – кванты коротковолнового электромагнитного излучения). Магнитное поле позволяет разделить эти частицы.