Методы изучения строения вещества. Физико-химические методы анализа: практическое применение. Термические методы анализа

С середины 20 в. происходят коренные изменения в методах химических исследований, в которые вовлекается широкий арсенал средств физики и математики. Классические задачи химии - установление состава и строения веществ - всё успешнее решаются с использованием новейших физических методов. Неотъемлемой чертой теоретической и экспериментальной химии стало применение новейшей быстродействующей вычислительной техники для квантовохимических расчётов, выявления кинетических закономерностей, обработки спектроскопических данных, расчёта структуры и свойств сложных молекул.

Из числа чисто химических методов, разработанных в 20 в., следует отметить микрохимический анализ, позволяющий производить аналитические операции с количествами веществ, в сотни раз меньшими, чем в методе обычного химического анализа. Большое значение приобрела хроматография, служащая не только для аналитических целей, но и для разделения весьма близких по химическим свойствам веществ в лабораторных и промышленных масштабах. Важную роль играет физико-химический анализ (ФХА) как один из методов определения химического состава и характера взаимодействия компонентов в растворах, расплавах и др. системах. В ФХА широко используются графические методы (диаграммы состояния и диаграммы состав - свойство). Классификация последних позволила уточнить понятие химического индивида, состав которого может быть постоянным и переменным. Предсказанный Курнаковым класс нестехиометрических соединений приобрёл большое значение в материаловедении и новой области - химия твёрдого тела.

Люминесцентный анализ, метод меченых атомов, рентгеновский структурный анализ, электронография, полярография и др. физико-химические методы анализа находят широкое применение в аналитической химии Использование радиохимических методик позволяет обнаружить присутствие всего нескольких атомов радиоактивного изотопа (например, при синтезе трансурановых элементов).

Для установления строения химических соединений важное значение имеет молекулярная спектроскопия, с помощью которой определяются расстояния между атомами, симметрия, наличие функциональных групп и др. характеристики молекулы, а также изучается механизм химических реакций. Электронная энергетическая структура атомов и молекул, величина эффективных зарядов выясняются посредством эмиссионной и абсорбционной рентгеновской спектроскопии. Геометрия молекул исследуется методами рентгеновского структурного анализа.

Обнаружение взаимодействия между электронами и ядрами атомов (обусловливающего сверхтонкую структуру их спектров), а также между внешними и внутренними электронами позволило создать такие методы установления строения молекул, как ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадрупольный резонанс (ЯКР), гамма-резонансная спектроскопия. Особую роль по широте применения приобрела ЯМР-спектроскопия. Для выяснения пространственных характеристик молекул возрастающее значение приобретают оптические методы: спектрополяриметрия, круговой дихроизм, дисперсия оптического вращения. Разрушение молекул в вакууме под влиянием электронного удара с идентификацией осколков применяется для установления их строения методом масс-спектроскопии. Арсенал кинетических методов пополнился средствами, связанными с использованием ЭПР - и ЯМР-спектроскопии (химическая поляризация ядер), метода импульсного фотолиза и радиолиза. Это позволяет изучать сверхбыстрые процессы, протекающие за время 10-9 сек и меньше.

Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Примером макроскопических систем могут служить газы, жидкости, твердые тела, плазма. Размеры атомов или молекул по сравнению с размерами макросистем очень малы. Они изменяются в диапазоне от 10 -10 м (размер атома водорода) до 10 -7 м (размер молекулы белка вируса). Органы чувств человека не позволяют различать размеры, форму, энергию и импульс отдельных молекул. Однако ряд экспериментов косвенно, а в отдельных случаях прямо позволяет это сделать. К прямым методам наблюдения молекул относятся методы современной микроскопии: электронной, ионной, голографической. Косвенные методы наблюдения : броуновское движение, давление газа на стенки сосудов, диффузия газов и жидкостей, вязкое трение и др. Все эти явления могут быть объяснены, если считать, что вещества: а) состоят из атомов и молекул, б) находятся в состоянии непрерывного беспорядочного движения и в) между ними действуют силы взаимодействия – притяжения и отталкивания.

Для исследования макроскопических процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй – термодинамики.

Молекулярная физика – раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении и взаимодействующих между собой по определенным законам. Здесь макроскопические свойства тел рассматриваются как проявление суммарного действия молекул. При этом в теории пользуются статистическими методом, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название - статистическая физика.

Термодинамика – раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический, или феноменологический, метод отличается от статистического.

Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования. Оба метода должны давать одинаковые результаты относительно свойств и состояния вещества в аналогичных условиях и, следовательно, между параметрами вещества, описывающими его состояние в молекулярно-кинетической теории и в термодинамике, должна существовать закономерная взаимосвязь.

Рентгеноструктурный анализ: 1) По дифракционным картинам, получаемым при прохождении через кристалл рентгеновского пучка, определяют межатомные расстояния и устанавливают структуру кристалла; 2) Широко применяется для определения структуры молекул белков и нуклеиновых кислот; 3) Длины и углы связей, точно установленные для малых молекул, используются как стандартные значения в предположении, что они сохраняются такими же и в более сложных полимерных структурах; 4) Одним из этапов определения структуры белков и нуклеиновых кислот является построение молекулярных моделей полимеров, согласующихся с рентгеновскими данными и сохраняющих стандартные значения длин связей и валентных углов

Ядерный магнитный резонанс: 1) В основе – поглощение электромагнитных волн в радиочастотном диапазоне ядрами атомов , обладающими магнитным моментом; 2) Поглощение кванта энергии происходит, когда ядра находятся в сильном магнитном поле ЯМР-спектрометра; 3) Различные по химическому окружению ядра поглощают энергию в несколько отличающемся по напряжению магнитном поле (или, при постоянном напряжении, несколько отличающиеся по частоте радиочастотные колебания ); 4) В результате получается спектр ЯМР вещества, в котором магнитно несимметричные ядра характеризуются определенными сигналами – «химическими сдвигами» по отношению к какому-либо стандарту; 5) Спектры ЯМР дают возможность определить число атомов данного элемента в соединении и число и характер других атомов, окружающих данный

Электронный парамагнитный резонанс (ЭПР): 1) Используется резонансное поглощение излучения электронами

Электронная микроскопия: 1) Используют электронный микроскоп, увеличивающий объекты в миллионы раз; 2) Первые электронные микроскопы появились в 1939 г.; 3) Обладая разрешением ~0,4 нм, электронный микроскоп позволяет «увидеть» молекулы белков и нуклеиновых кислот, а также детали строения клеточных органелл; 4) В 1950 г. были сконструированы микротомы и ножи , позволяющие делать ультратонкие (20–200 нм) срезы тканей, предварительно залитых в пластмассу



Методы выделения и очистки белков: После того, как выбран источник выделения белка, следующим шагом является экстракция его из ткани. Если экстракт, содержащий значительную часть исследуемого белка, получен, из него удалены частицы и небелковый материал, можно приступать к очистке белка. Концентрирование . Его можно проводить путем осаждения белка с последующим растворением осадка в меньшем объеме. Обычно при этом используют сульфат аммония или ацетон. Концентрация белка в исходном растворе должна быть не меньше 1 мг/мл. Тепловая денатурация . На начальном этапе очистки для разделения белков иногда используют тепловую обработку. Она эффективна, если белок относительно устойчив в условиях нагревания, в то время как сопутствующие белки денатурируют. При этом варьируют рН раствора, продолжительность обработки и температуру. Для выбора оптимальных условий предварительно проводят серию небольших опытов. После проведения первых этапов очистки белки далеки от гомогенного состояния. В полученной смеси белки отличаются друг от друга растворимостью, молекулярной массой, величиной суммарного заряда молекулы, относительной стабильностью и т.д.Осаждение белков органическими растворителями. Это один из старых методов. Он играет важную роль при очистке белков в промышленных масштабах. Чаще всего используют такие растворители как этанол и ацетон, реже – изопропанол, метанол, диоксан. Основной механизм процесса: по мере возрастания концентрации органического растворителя снижается способность воды к сольватации заряженных гидрофильных молекул фермента. Происходит снижение растворимости белков до уровня, при котором начинается агрегация и осаждение. Важным параметром, влияющим на осаждение, является размер молекулы белка. Чем больше молекула, тем ниже концентрация органического растворителя, вызывающая осаждение белка. Гельфильтрация С помощью метода гельфильтрации можно быстро разделить макромолекулы в соответствии с их размерами. Носителем для хроматографии является гель, который состоит из поперечно-сшитой трехмерной молекулярной сетки, сформированной в виде шариков (гранул) для удобства наполнения колонок. Так сефадексы - это поперечно-сшитые декстраны (α-1→6-глюканы микробиального происхождения) с заданными размерами пор. Сшиты цепи декстрана трехуглеродными мостиками с помощью эпихлоргидрина. Чем больше поперечных сшивок, тем меньше размеры отверстий. Полученный таким образом гель играет роль молекулярного сита. При пропускании раствора смеси веществ через колонку, наполненную набухшими гранулами сефадекса, крупные частицы, размер которых превышает размер пор сефадекса, будут двигаться быстро. Мелкие молекулы, например, соли, будут двигаться медленно, поскольку в процессе движения они проникают внутрь гранул. Электрофорез

Физический принцип метода электрофореза заключается в следующем. Молекула белка в растворе при любом рН, отличающемся от её изоэлектрической точки, имеет некий средний заряд. Это приводит к тому, что белок движется в электрическом поле. Движущая сила определяется величиной напряженности электрического поля Е умноженной на суммарный заряд частицы z . Этой силе противостоят силы вязкости среды, пропорциональные коэффициенту вязкости η , радиусу частицы r (стоксовскому радиусу) и скорости v .; Е ·z = 6πηrv.

Определение молекулярной массы белка. Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества путём определения отношения массы к заряду. Белки способны приобретать множественные положительные и отрицательные заряды. Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул.

Методы выделения и очистки ферментов Выделение ферментов из биологического материала – единственный реальный способ получения ферментов. Источники фермента: ткани; бактерии, выращенные на среде, содержащей соответствующий субстрат; клеточные структуры (митохондрии и др.). Необходимо сначала выделить нужные объекты из биологического материала.

Методы выделения ферментов: 1)Экстракция (перевод в раствор): буферным раствором (предупреждает подкисление); высушивание ацетоном; обработка материала смесью бутанола с водой; экстракция различными органическими растворителями, водными растворами детергентов; обработка материала перхлоратами, гидролитическими ферментами (липазами, нуклеазами, протеолитическими ферментами)

Бутанол разрушает липопротеиновый комплекс, а фермент переходит в водную фазу.

Обработка детергентом приводит к истинному растворению фермента.

Фракционирование. Факторы, влияющие на результаты: рН, концентрация электролитов. Необходимопостоянно измерять активность фермента.

· фракционное осаждение при изменении рН

· фракционная денатурация нагреванием

· фракционное осаждение органическими растворителями

· фракционирование солями – высаливание

фракционная адсорбция (А. Я. Данилевский ): адсорбент вносят в раствор фермента, затем каждую порцию отделяют центрифугированием

§ если фермент адсорбируется, то его отделяют, затем элюируют с адсорбента

§ если фермент не адсорбируется, то обработку адсорбентом используют для отделения балластных веществ

ферментный раствор пропускают через колонку с адсорбентом и собирают фракции

Ферменты адсорбируются избирательно:колоночная хроматография;электрофорез; кристаллизация – получение высокоочищенных ферментов.

Клетка как минимальная единица жизни .

Современная клеточная теория включает следующие основные положения: Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого. Кл всех одноклеточных и многоклеточных организмов сходны (гомологичны) по строению, химическому составу, основным проявлениям жизнедеятел. и обмену веществ. Размножение клеток происходит путем их деления, т.е. каждая новая клетка. В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы. Кл – это элементарная живая система, способная к самообновлению, саморегуляции и самопроизведению.

Строение клетки. размеры прокариотических клеток составляют в среднем 0,5-5 мкм, размеры эукариотических - в среднем от 10 до 50 мкм.

Различают два типа клеточной организации: прокариотический и эукариотический. Клетки прокариотического типа устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме. В цитоплазме имеются многочисленные мелкие рибосомы; микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру. К прокариотам относят бактерии. Большинство современных живых организмов относится к одному из трех царств –растений, грибов или животных, объединяемых в надцарство эукариот. Организмы делят на одноклеточные и многоклеточные. Одноклеточные организмы состоят из одной единственной клетки, выполняющей все функции. Одноклеточными являются все прокариоты.

Эукариоты - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Биологические мембраны, их свойства и функции Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно. Плазматическая мембрана, или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов. Молекулы фосфолипидов расположены в два ряда - гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы - поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям. Свойства и функции мембран . Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью. Мембраны - структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях. Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознавании факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят друг к другу как отдельные элементы цельной структуры. Такое взаимное узнавание - необходимый этап, предшествующий оплодотворению. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды. избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом. Существует несколько механизмов транспорта веществ через мембрану.

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na - / К - -насос в клетках животных, активно выкачивающих ионы Na + наружу, поглощая при этом ионы К - . Благодаря этому в клетке поддерживается большая концентрация К - и меньшая Na + по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ. В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg 2- и Са 2+ .

При эндоцитозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицел-люлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие: Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.). Являются катализаторами (обеспечение примембранных химических процессов). Участвуют в преобразовании энергии.

«Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, которое находится в процессе разложения, мы без исключения встречаем явление жизни»

Белки– высокомолекулярные азотосодержащие органические соединения, характеризующиеся строго определенным элементарным составом и распадающиеся до аминокислот при гидролизе.

Особенности, отличающие их от других органических соединений

1. Неисчерпаемое многообразие структуры и вместе с тем ее высокая видовая уникальность

2. Огромный диапазон физических и химических превращений

3. Способность в ответ на внешнее воздействие обратимо и вполне закономерно изменять конфигурацию молекулы

4. Склонность к образованию надмолекулярных структур, комплексов с другими химическими соединениями

Полипептидная теория строения белка

только Э. Фишер (1902) сформулировал полипептидную теорию строения . Согласно этой теории, белки представляют собой сложные полипептиды, в которых отдельные аминокислоты связаны друг с другом пептидными связями, возникающими при взаимодействии α-карбоксильных СООН- и α-NН 2 -групп аминокислот. На примере взаимодействия аланина и глицина образование пептидной связи и дипептида (с выделением молекулы воды) можно представить следующим уравнением:

Наименование пептидов складывается из названия первой N-концевой аминокислоты со свободной NH 2 -группой (с окончанием -ил, типичным для ацилов), названий последующих аминокислот (также с окончаниями -ил) и полного названия С-концевой аминокислоты со свободной СООН-группой. Например, пентапептид из 5 аминокислот может быть обозначен полным наименованием: глицил-аланил-серил-цистеинил-аланин, или сокращенно Гли–Ала–Сер–Цис–Ала.

экспериментальные доказательства полипептидной теории строения белка .

1. В природных белках сравнительно мало титруемых свободных СООН- и NH 2 -групп, поскольку абсолютное их большинство находится в связанном состоянии, участвуя в образовании пептидных связей; титрованию доступны в основном свободные СООН- и NН 2 -группы у N- и С-концевых аминокислот пептида.

2. В процессе кислотного или щелочного гидролиза белка образуются стехиометрические количества титруемых СООН- и NH 2 -групп, что свидетельствует о распаде определенного числа пептидных связей.

3. Под действием протеолитических ферментов (протеиназ) белки расщепляются на строго определенные фрагменты, называемые пептидами, с концевыми аминокислотами, соответствующими избирательности действия протеиназ. Структура некоторых таких фрагментов неполного гидролиза доказана последующим химическим их синтезом.

4. Биуретовую реакцию (сине-фиолетовое окрашивание в присутствии раствора сульфата меди в щелочной среде) дают как биурет, содержащий пептидную связь, так и белки, что также является доказательством наличия в белках аналогичных связей.

5. Анализ рентгенограмм кристаллов белков подтверждает полипептидную структуру белков. Таким образом, рентгеноструктурный анализ при разрешении 0,15–0,2 нм позволяет не только вычислить межатомные расстояния и размеры валентных углов между атомами С, Н, О и N, но и «увидеть» картину общего расположения аминокислотных остатков в полипептидной цепи и пространственную ее ориентацию (конформацию).

6. Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением: инсулина – 51 аминокислотный остаток, лизоцима – 129 аминокислотных остатков, рибонуклеазы – 124 аминокислотных остатка. Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ Декан химического факультета Ю.Г. Слижов «___» ___________

О.К. Базыль

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ В ХИМИИ

Учебное пособие

УДК 543.42 ББК 22.344а73 П 25

Базыль О.К.

П 25 Физические методы исследования в химии: учеб. пособие. –Томск: Томский государственный университет, 2013. – 88 с.

Дается краткое описание теоретических основ ряда физических методов исследования вещества. Цель данного руководства – знакомство с областями и возможностями применения оптических (колебательной, вращательной, электронной спектроскопии и фотофизики молекул), резонансных (ЭПР и ЯМР) методов и методов измерения дипольных моментов.

Для студентов химического факультета, изучающих курс «Строение вещества».

Рецензент –

канд. хим. наук, проф. кафедры физической и коллоидной химии Т.С. Минакова

УДК 543.42 ББК 22.344а73

Базыль О.К., 2013Томский государственный университет, 2013

ПРЕДИСЛОВИЕ..........................................................................................................................

РАЗДЕЛ ПЕРВЫЙ. Электрический дипольный момент, его природа

и методы определения.........................................................................................................

Глава 1. Теоретические основы метода...................................................................................

1.1. Природа дипольного момента........................................................................................

1.2. Диполь в статическом электрическом поле. Поляризуемость молекулы..................

1.3. Диэлектрик в статическом электрическом поле. Поляризация диэлектрика..........

1.4. Уравнения Дебая и Клаузиуса–Моссотти...................................................................

1.5. Поляризация диэлектрика при высоких частотах электромагнитного поля.

Молярная рефракция.....................................................................................................

Глава 2. Методы измерения дипольного момента и использование его в химии........

2.1. Первый метод Дебая......................................................................................................

2.2. Определение дипольного момента с помощью эффекта Штарка.............................

2.3. Метод электрического резонанса.................................................................................

2.4. Использование данных по дипольным моментам в химии......................................

РАЗДЕЛ ВТОРОЙ. Оптические спектральные методы....................................................

Глава 3. Теоретические основы спектральных методов...................................................

3.1. Постулаты Бора..............................................................................................................

3.2. Разделение энергии молекул на части и основные типы спектров..........................

Глава 4. Вращательные спектры двухатомных молекул..................................................

4.1. Энергия вращательных стационарных уровней.........................................................

4.1.1. Сферических волчок...........................................................................................

4.1.2. Симметричный волчок........................................................................................

4.2.3. Линейная молекула.............................................................................................

4.2. Правила отбора и вращательный спектр поглощения...............................................

4.3. Определение геометрических параметров молекул из вращательных спектров....

Глава 5. Колебания молекул.

Определение структуры и свойств двухатомных молекул........................................

5.1. Теоретические основы метода ИК-спектроскопии....................................................

5.2. Колебательный спектр гармонического осциллятора...............................................

5.3. Колебательный спектр ангармонического осциллятора...........................................

Глава 6. Колебательные спектры многоатомных молекул..............................................

6.1. Классификация нормальных колебаний.......................................................................

6.2. Групповые и характеристические частоты.................................................................

6.3. Применение ИК спектроскопии...................................................................................

Контрольные вопросы..............................................................................................................

Задания........................................................................................................................................

Глава 7 . Электронные спектры поглощения и излучения молекул.

Внутримолекулярные фотофизические процессы.......................................................

7.1. Электронные состояния и спектры двухатомных молекул......................................

7.2. Принцип Франка-Кондона для внутримолекулярных процессов............................

7.3. Электронные спектры поглощения многоатомных молекул.

Закон Ламберта – Бера..................................................................................................

7.4. Классификация электронных переходов....................................................................

7.5. Процессы дезактивации поглощенной энергии.

Диаграмма энергетических уровней............................................................................

7.6. Флуоресценция и ее законы.........................................................................................

7.7. Применение электронных спектров............................................................................

Контрольные вопросы.............................................................................................................

Задания........................................................................................................................................

РАЗДЕЛ ТРЕТИЙ. Резонансные методы исследования....................................................

Глава 8. Спектроскопия электронного парамагнитного резонанса................................

8.1. Теоретические основы метода. Эффект Зеемана.......................................................

8.2. Условие простого резонанса. g - Фактор...................................................................

8.3. Электрон - ядерное взаимодействие............................................................................

8.4. Сверхтонкая структура спектров ЭПР........................................................................

8.5. Применение спектров ЭПР в химии............................................................................

Контрольные вопросы..............................................................................................................

Задания........................................................................................................................................

Глава 9. Спектроскопия ядерного магнитного резонанса................................................

9.1. Магнитный момент ядра и его взаимодействие с магнитным полем.

Условие простого ядерного резонанса........................................................................

9.2. Химический сдвиг сигнала ЯМР.................................................................................

9.3. Спин-спиновое взаимодействие и мультиплетность сигналов ЯМР.......................

9.4. Применение спектров ЯМР в химии...........................................................................

Контрольные вопросы.............................................................................................................

Задания........................................................................................................................................

ПЛАНЫ СЕМИНАРСКИХ ЗАНЯТИЙ.................................................................................

ЛИТЕРАТУРА............................................................................................................................

ПРЕДИСЛОВИЕ

В настоящее время очевидно, что развитие химии невозможно без широкого использования физических методов исследования строения и свойств вещества. Арсенал современных физических методов в химии настолько обширен, а применение их настолько разнообразно, что требует систематического изучения теоретических принципов, лежащих в основе того или иного метода для грамотного понимания возможностей метода, практического применения и трактовки результатов измерений.

Измеряемые характеристики вещества в одних случаях необходимы для устанавливания закономерностей, связывающих физические и химические свойства вещества с химическим строением отдельных молекул, а в других - для оптимизации технологических процессов. Кроме определения основных характеристик и свойств молекул некоторые из физических методов исследования позволяют изучать кинетические равновесия и механизмы химических реакций.

Наряду с совершенствованием оборудования и приборов, применяемых при исследовании, важной тенденцией современного использования физических методов является их комплексное использование, особенно в целях идентификации вещества и установления его химического строения. Наиболее широко в этих целях применяются оптические и резонансные спектральные методы (ИК-, УФ-, ЯМР- (ПМР-) спектры) и массспектроскопия. В настоящее время для полного и достоверного решения задачи требуются данные возможно большего числа методов.

Учебный план раздела "Физические методы исследования в химии" курса "Строение вещества" включает в себя лекции, семинарские и лабораторные занятия. Настоящее учебное пособие составлено в помощь студентам при подготовке к семинарским занятиям. В силу ограниченного числа часов, отведенных планом на семинарские занятия, на них рассматриваются только методы оптической и резонансной спектроскопии, а также методы измерения дипольного момента молекул. Именно эти методы рассмотрены в пособии. В пособии изложены теоретические основы каждого из методов без загромождения математическими выкладками и сложными формулами, что важно для первого знакомства студентов с предметом, определены области их применения и возможности.

Пособие состоит из трех разделов, содержащих 9 глав, каждая из которых посвящена одному методу. В пределах главы коротко изложена теория, на которой базируется метод, область применения данного метода, его

достоинства и недостатки. Следующие за теорией контрольные вопросы рассчитаны на проверку понимания студентом изучаемого материала, задания – на попытку применения знания каждого из рассматриваемых методов. По каждому методу приведен план семинарского занятия.

На лабораторных занятиях студенты занимаются расшифровкой ИК-, ПМРспектров многоатомных молекул и масс-спектрограмм. В лекционном курсе по разделу "Физические методы исследования в химии" рассматриваются все наиболее часто используемые в настоящее время в химии физические методы, их современная техническая база. Таким образом, данный курс охватывает знакомство со всеми наиболее часто используемыми в настоящее время физическими методами исследования вещества.

РАЗДЕЛ ПЕРВЫЙ. Электрический дипольный момент, его природа и методы измерения

ГЛАВА 1. Теоретические основы метода

1.1. Природа дипольного момента

В общем случае под электрическим диполем понимают любую систему, состоящую из равных по величине и противоположных по знаку электрических зарядов q i , расположенных на расстоянии l i :

Радиус - вектор l i , направлен от центра тяжести отрицательного электронного заряда к центру тяжести положительного ядерного заряда (рис.1.1). Из выражения (1.1) следует, что дипольный момент является величиной векторной. Различный характер распределения электронной плотности в молекулах делит их на два основных класса - полярные и неполярные. Полярные молеку-

лы обладают дипольным

моментом, неполярные -

нет. Понятие полярности

неполярности)

Рис. 1.1. Центры тяжести положительного (OQ+ ) и отрицательного

быть отнесено

каждой из химических

(CQ - ) зарядов и направление дипольного момента в двухатомной

молекуле.

связей, образующих мо-

Т а б л и ц а 1.1

Зависимость полярности молекулы АВX

от геометрического расположения атомов для общего случая полярной связи А-В

Тип молекулы

Геометрия

Наличие дипольно-

го момента

АВ2

линейная

СО2 , СS2

АВ2

H2 O, SO2

АВ3

BF3 , SO3

АВ3

пирамидальная

NH3 , PF3

Если в молекуле несколько полярных связей, при определении дипольного момента молекулы дипольные моменты этих связей суммируются по закону суммирования векторов, поэтому величина дипольного

момента молекулы определяется не только величиной связевых дипольных моментов, но и их расположением в пространстве относительно друг друга. То есть, в сходных молекулах величина дипольного момента характеризует геометрию молекул (таблица 1.1).

Причинами возникновения дипольного момента молекул являются: 1) Смещение центра тяжести зарядов электронов, образующих хими-

ческую связь в сторону более электроотрицательных атомов связи. В симметричных двухатомных молекулах в отсутствии внешнего электри-

электронное

симметрично относительно ядер. Сле-

довательно, центр тяжести положитель-

ных зарядов ядер и отрицательных

Рис. 1.2. Схема возникновения

зарядов связывающих электронов каждого

гомополярного диполя в моле-

из атомов связи совпадают и дипольный

момент равен нулю.

2) Появление

гомополярного

По причине различий в размерах атомных орбиталей, образующих химическую связь, область перекрывания орбиталей, т.е. область более вероятного нахождения связывающих электронов (отрицательного заряда), оказывается смещенной относительно центра положительных зарядов ядер атомов, образующих химическую связь. Эта ситуация приводит к возникновению гомополярного диполя химической связи (рис. 1.2).

3) Ассиметрия несвязывающей электронной пары. Возникновение диполя из-за наличия в молекуле неподе-

ленной пары электронов удобно рас-

смотреть на примере молекул NH3 (а) и

NF3 (в)

(рис.1.3). Сравнение электроот-

рицательностей атомов Н (2.1), N (3.0) и

Рис. 1.3. Сложение векторов свя-

F (4.0) показывает, что несмотря на бли-

зевых дипольных моментов с ди-

зость дипольных моментов связей N-H и

польным моментом неподеленной

N-F, дипольные

связей N-H

суммарный

дипольный

момент, направление которого совпадает с направлением дипольного момента неподеленной пары электронов азота. В случае молекулы NF3 суммарный связевый момент направлен против дипольного момента неподеленной пары азота. В результате дипольный момент аммиака больше дипольного момента NF3 .

Все изложенное выше касается дипольного момента молекулы вне электрического поля.

1.2. Диполь в статическом электрическом поле. Поляризуемость молекулы

Во внешнем электрическом поле заряды, образующие молекулу (электроны больше, ядра меньше), испытывают смещение в разных направлениях. В результате этого в постоянном электрическом поле центры тяжести положительных и отрицательных зарядов даже в неполярных молекулах перестают совпадать и молекула приобретает дипольный момент под действием поля называемый наведенным или индуцированным дипольным моментом.

Свойство молекулы приобретать дипольный момент под действием электрического поля называется поляризуемостью. Величина индуцированного дипольного момента молекулы зависит от величины напряженности электрического поля и от свойств самой молекулы

µ ≈ ε0 αЕ , (1.2) где ε0 - диэлектрическая проницаемость вакуума, α - поляризуемость мо-

лекулы, Е - напряженность внешнего электрического поля.

В зависимости от типа смещения заряда поляризуемость можно разделить на следующие составляющие.

1). Электронная поляризуемость - αэл . Возникает при упругом смещении электронных орбит относительно ядер в молекуле. Данный тип поляризуемости является безинерционным: αэл исчезает со снятием напряженности внешнего электрического поля.

2). Ядерная поляризуемость - αяд. . Возникает при смещении ядер в молекуле относительно друг друга. Ядерная поляризуемость также практически безинерционна, но по величине много меньше электронной:

α яд.<< α эл.

Вместе эта два типа поляризуемости называют деформационной поляризуемостью:

α деф.= α яд.+ α эл.

Оба типа поляризуемости присутствуют в полярных и неполярных молекулах, для неполярных молекул полная поляризуемость равна деформационной.

Во внешнем электрическом поле в полярных молекулах, т.е молекулах имеющих собственный дипольный момент, помимо деформационной поляризуемости возникает ориентационный дипольный момент благодаря стремлению собственного дипольного момента молекулы ориентироваться по направлению внешнего электрического поля и, соответственно, ориентационная поляризуемость αор. . Таким образом, полная поляризуемость полярных молекул равна:

Рис. 1.4. Электростатическое поле, наведенное полем плоского конденсатора в диэлектрике

α = αдеф. + αор. = αяд. + αэл. + αор. .

Поскольку тепловое движение разрушает ориентацию собственных дипольных моментов молекул в постоянном электрическом поле, ориентационная поляризуемость обладает инерцией, т.е. αор. , как и полная поляризуемость полярных молекул, при снятии напряженности внешнего электрического поля снижается с некоторой задержкой.

1.3. Диэлектрик в постоянном электрическом поле. Поляризация диэлектрика

Вещества, состоящие из полярных и неполярных молекул, в основном являются диэлектриками. Если диэлектрик поместить в электрическое поле конденсатора, произойдет поляризация диэлектрика, которая изменит напряженность электрического поля конденсатора. В плоском конденсаторе с площадью пластин А, расстоянием между ними d и плотностью заряда на пластине конденсатора σ напряженность электрического поля равна Е.

На поверхности диэлектрика, находящегося в электрическом поле конденсатора, возникают наведенные заряды плотности Р, дипольный момент созданный ими равен: µ = Р×А×d, а средний дипольный момент единицы объема диэлектрика, заполняющего все пространство конденса-

тора, равен:

µср = µ/V=(Р×А×d)/V=P, здесь V- объем диэлектрика в конденсаторе.

Из полученного выражения можно заключить, что поляризация диэлектрика есть средний дипольный момент единицы объема диэлектрика.

Заметим, что напряженность электрического поля, созданного наведенными зарядами поверхности конденсатора, направлена против напряженности поля самого конден-

сатора и уменьшает его (рис. 1.4).

Поскольку поляризация диэлектрика - результат сложения собственных и наведенных дипольных моментов его молекул, можно говорить о деформационной и ориентационной составляющих поляризации всего диэлектрика, если отнести величину наведенного дипольного момента к единице объема.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Эксперементальные методы

1.1 Рентгеноэлектронная спектроскопия

1.2 Ифракрасная спектроскопия

1.3 Дифракционные методы

2. Теоретические методы

2.1 Полуэмпирические методы

2.2 Неэмпирические методы

2.3 Кванто-механические методы

2.4 Метод Хюккеля

Заключение

Список использованных источников

ВВЕДЕНИЕ

В современной органической химии большое значение имеют различные физические методы исследования. Их можно разделить на две группы. К первой группе относятся методы, позволяющие получать различные сведения о строении и физических свойствах вещества, не производя в нем никаких химических изменений. Из методов этой группы, пожалуй, наибольшее применение получила спектроскопия в широком диапазоне областей спектра -- от не слишком жестких рентгеновских лучей до радиоволн не очень большой длины. Ко второй группе относятся методы, в которых используются физические воздействия, вызывающие химические изменения в молекулах. В последние годы к ранее применявшимся широкоизвестным физическим средствам воздействия на реакционную способность молекулы прибавились и новые. Среди них особое значение имеют воздействия жестких рентгеновских лучей и потоков частиц больших энергий, получаемых в атомных реактора

Целью данной курсовой работы является - узнать о методах исследований строения молекул.

Задача курсовой работы:

Выяснить виды методов и изучить их.

1. ЭКСПЕРЕМЕНТАЛЬНЫЕ МЕТОДЫ

1.1 Р ентгеноэлектронная спектроскопия

Метод исследования электронного строения химического соединения, состава и структуры поверхности твердых тел, основанный на фотоэффекте с использованием рентгеновского излучения. При облучении вещества происходит поглощение рентгеновского кванта hv (h-постоянная Планка, v-частота излучения), сопровождающееся эмиссией электрона (наз. фотоэлектроном) с внутренних или внешних оболочек атома. Энергия связи электрона Е св в образце в соответствии с законом сохранения энергии определяется уравнением: Е св = hv-E кин, где E кин -кинетическая энергия фотоэлектрона. Значения Е св электронов внутренних оболочек специфичны для данного атома, поэтому по ним однозначно можно определить состав хим. соединения. Кроме того, эти величины отражают характер взаимодействия исследуемого атома с другими атомами в соединении, т.е. зависят от характера химической связи. Количеств состав образца определяют по интенсивности I потока фотоэлектронов. Принципиальная схема прибора для РЭС-электронного спектрометра-показана на рисунке 1. Образцы облучают рентгеновским излучением из рейтгеновской трубки либо синхротронным излучением. Фотоэлектроны попадают в анализатор-прибор, в котором из общего потока выделяются электроны с определенной Е кин. Сфокусировать монохроматический поток электронов из анализатора направляется в детектор, где определяется его интенсивность I. В рентгеноэлектронном спектре разным атомам соответствуют свои максимумы интенсивности (рисунок 2), хотя некоторые максимумы могут сливаться, давая одну полосу с увеличенной интенсивностью. Линии спектра обозначают следующим образом: рядом с символом элемента называют исследуемую орбиталь (напр., запись Cls означает, что регистрируют фотоэлектроны с орбитали 1s углерода).

Рисуник 1- Схема электронного спектрометра: 1-источник излучения; 2-образец; 3- анализатор; 4-детектор; 5-экран для защиты от магнитного поля

Рисунок 2- Рентгеноэлектронный спектр Сls этилтрифторацетата

РЭС позволяет исследовать все элементы, кроме Н, при содержании их в образце ~ 10 -5 г (пределы обнаружения элемента с помощью РЭС 10 -7 -10 -9 г). Относительное содержание элемента может составлять доли процента. Образцы могут быть твердыми, жидкими или газообразными. Величина E св электрона внутренней оболочки атома А в химических соединениях зависит от эффективного заряда q А на этом атоме и электростатического потенциала U, создаваемого всеми другими атомами соединения: E св = kq А + U, где k-коэффициент пропорциональности.

Для удобства в РЭС вводят понятие химического сдвига E св, равного разности между Е св в исследуемом соединении и некотором стандарте. В качестве стандарта обычно используют значение E св, полученное для кристаллической модификации элемента; например, стандартом при исследовании соединении S служит кристаллическая сера. Поскольку для простого вещества q А 0 и U = 0, то E св = kq A + U. Таким образом, химический сдвиг свидетельствует о положительном эффективном заряде на изучаемом атоме А в химическом соединении, а отрицательный об отрицательном заряде, причем значения E св пропорционально эффективному заряду на атоме. Поскольку изменение эффективного заряда на атоме А зависит от его степени окисления, характера соседних атомов и геометрической структуры соединения, по E св можно определять природу функциональных групп, степень окисления атома, способ координации лигандов и т.д. Энергии связи электронов функциональных атомных групп слабо зависят от типа химического соединения, в котором находится данная функциональная группа.

1.2 И нфракрасная спектроскопия

Раздел оптической спектроскопии, изучающий спектры поглощения и отражения электромагнитного излучения в ИК области, т.е. в диапазоне длин волн от 10 -6 до 10 -3 м. В координатах интенсивность поглощенного излучения - длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебательными уровнями основного электронного состояния изучаемой системы. Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геометрического строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классические спектрофотометры и фурье спектрометры. Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.) и дифракционной решетки. Последовательное выведение излучения различных длин волн на выходную щель и приемник излучения (сканирование) осуществляется поворотом призмы или решетки. Источники излучения - накаливаемые электрическим током стержни из различных материалов. Приемники: чувствительные термопары, металлические и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда которых приводит к нагреву газа и изменению его давления, которое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой. Достоинства приборов классической схемы: простота конструкции, относит дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой ИК области; сравнительно невысокая разрешающая способность (до 0.1 см -1), длительная (в течение минут) регистрация спектров. В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков. Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонических составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ. Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0.001 см -1). Недостатки: сложность изготовления и высокая стоимость. Все спектрофотометры снабжаются ЭВМ, которые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра растворителя), изменение масштаба записи, вычисление экспериментально спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для ИК спектрофотометров изготовляют из прозрачных в ИК области материалов. В качестве растворителей используют обычно ССl 4 , СНСl 3 , тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют специально защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом. В случае слабо поглощающих в-в (разреженные газы и др.) применяют многоходовые кюветы, в которых длина оптические пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал. Большое распространение получил метод матричной изоляции, при котором исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается и спектр получается более контрастным. Применение специльной микроскопической техники позволяет работать с объектами очень малых размеров (доли мм). Для регистрации спектров поверхности твердых тел применяют метод нарушенного полного внутреннего отражения. Он основан на поглощении поверхностным слоем вещества энергии электромагнитного излучения, выходящего из призмы полного внутреннего отражения, которая находится в оптическом контакте с изучаемой поверхностью. Инфракрасную спектроскопию широко применяют для анализа смесей и идентификация чистых веществ. Количественный анализ основан на законе Бугера-Ламберта-Бера, т. е. на зависимости интенсивности полос поглощения от концентрации вещества в пробе. При этом о кол-ве вещества судят не по отделенным полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значительном перекрывании последних. Погрешность количественного анализа, как правило, составляет доли процента. Идентификация чистых веществ производится обычно с помощью информационно-поисковых систем путем автоматического сравнения анализируемого спектра со спектрами, хранящимися в памяти ЭВМ. Для идентификации новых веществ (молекулы которых могут содержать до 100 атомов) применяют системы искусственного интеллекта. В этих системах на основе спектроструктурных корреляций генерируются молярные структуры, затем строятся их теоретические спектры, которые сравниваются с экспериментальными данными. Исследование строения молекул и др. объектов методами инфракрасной спектроскопии подразумевает получение сведений о параметрах моделей и математически сводится к решению т. наз. обратных спектральных задач. Решение таких задач осуществляется последовательным приближением искомых параметров, рассчитанных с помощью спец. теории спектральных кривых к экспериментальным. Параметрами мол. моделей служат массы составляющих систему атомов, длины связей, валентные и торсионные углы, характеристики потенциальной поверхности (силовые постоянные и др.), дипольные моменты связей и их производные по длинам связей и др. Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимодействия, характер химических связей, распределение зарядов в молекулах, фазовые превращения, кинетику химических реакций, регистрировать короткоживущие (время жизни до 10 -6 с) частицы, уточнять отдельные геом. параметры, получать данные для вычисления термодинамических функций и др. Необходимый этап таких исследований - интерпретация спектров, т.е. установление формы нормальных колебаний, распределения колебательной энергии по степеням свободы, выделение значимых параметров, определяющих положение полос в спектрах и их интенсивности. Расчеты спектров молекул, содержащих до 100 атомов, в т.ч. полимеров, выполняются с помощью ЭВМ. При этом необходимо знать характеристики мол. моделей (силовые постоянные, электрооптические параметры и др.), которые находят решением соответствующих обратных спектральных задач или квантовохимическими расчетами. И в том, и в другом случае обычно удается получать данные для молекул, содержащих атомы лишь первых четырех периодов периодической системы. Поэтому инфракрасная спектроскопия как метод изучения строения молекул получил наиболее распространение в органической и элементоорганической химии. В отдельных случаях для газов в ИК области удается наблюдать вращательную структуру колебательных полос. Это позволяет рассчитывать дипольные моменты и геом. параметры молекул, уточнять силовые постоянные и т.д.

1.3 Дифракционные методы

Дифракционные методы исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучении рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов. Различают рентгенографию, электронографию, нейтронографию. Во всех случаях первичный, чаще всего монохроматический, пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0.2 нм, т. е. соизмерима с расстояниями между атомами в веществе (0.1-0.4 нм), то рассеяние падающей волны представляет собой дифракцию на атомах. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Теория, описывающая связь картины упругого рассеяния с пространств, расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимодействия разного рода излучений с веществом имеет разную физ. природу, конкретный вид и особенности дифракционной. картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.

Основы теории дифракции. Плоскую монохроматическую. волну с длиной волны и волновым вектором, где можно рассматривать как пучок частиц с импульсом, где Амплитуда волны, рассеянной совокупностью из атомов, определяется уравнением:

По такой же формуле рассчитывают и атомный фактор, при этом описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками атомов. Соответствующий атомный фактор численно равен числу электронов в атоме, если выражен в названии электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободном электроне. Рассеяние электронов определяется электростатическим потенциалом атома. Атомный фактор для электрона связан соотношением:

исследование молекула спектроскопия дифракционный квантовый

Рисунок 2- Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), электронов (2) и нейтронов (3) от угла рассеяния

Рисунок 3- Относительная зависимость усредненных по углу атомных факторов рентгеновских лучей (сплошная линия), электронов (штриховая)и нейтронов от атомного номера Z

При точных расчетах рассматривают отклонения распределения электронной плотности или потенциала атомов от сферической симметрии и название атомно-температурный фактор, учитывающий влияние тепловых колебаний атомов на рассеяние. Для излучения помимо рассеяния на электронных оболочках атомов существует роль может играть резонансное рассеяние на ядрах. Фактор рассеяния f м зависит от волновых векторов и векторов поляризации падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности (r) необходимо знать также фазы (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить функцию (r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов. Структурный анализ. Монокристалл представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для которых вектор рассеяния равен вектору обратной решетки.

Для построения функции (х, у, z)по экспериментально определяемым величинам применяют метод проб и ошибок, построение и анализ функции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз. Обработка экспериментальных данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Структуры кристаллов изучают с помощью рентгеновского структурного анализа. Этим методом определено более 100 тысяч структур кристаллов.

Для неорганических кристаллов с применением различных методов уточнения (учет поправок на поглощение, анизотропию атомно-температурного фактора и т. д.) удается восстановить функцию с разрешением до 0.05

Рисунок 4- Проекция ядерной плотности кристаллической структуры

Это позволяет определять анизотерапию тепловых колебаний атомов, особенности распределения электронов, обусловленные химической связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры кристаллов белков, молекулы которых содержат тысячи атомов. Дифракция рентгеновских лучей используется также для изучения дефектов в кристаллах (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качественного и количественного определения фазового состава поликристаллических материалов. Электронография как метод изучения структуры кристаллов имеет след. особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях вещества толщиной 1 -100 нм; 2) f э зависит от атомного ядра слабее, чем f р, что позволяет проще определять положение легких атомов в присутствии тяжелых; Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 эВ, 0.1-0.4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0.2-0.5 нм. Источниками нейтронов для структурного анализа служат ядерные реакторы на быстрых нейтронах, а также импульсные реакторы. Спектр пучка нейтронов, выходящих из канала реактора, непрерывен вследствие максвелловского распределения нейтронов по скоростям (его максимум при 100°С соответствует длине волны 0.13 нм).

Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. Нейтронографию используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от атомного номера позволяет достаточно точно определять положение легких атомов. Кроме того, изотопы одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и углеводорода 3.74.10 13 см, у дейтерия 6.67.10 13 см). Это дает возможность изучать расположение изотопов и получать дополнит. сведения о структуре путем изотопного замещения. Исследование магнитного взаимодействия. нейтронов с магнитнами моментами атомов дает информацию о спинах магнитного атомов. Мёссбауэровское -излучение отличается чрезвычайно малой шириной линии - 10 8 эВ (тогда как ширина линии характеристических излучения рентгеновских трубок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магнитное поле и градиент электрического поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом кристалле ядер, для которых наблюдается эффект Мёссбауэра. Структурный анализ некристаллическихвеществ.Отдельные молекулы в газах, жидкостях и твердых аморфных телах по-разному ориентированы в пространстве, поэтому определить фазы рассеянных волн, как правило, невозможно. В этих случаях интенсивность рассеяния обычно представляют с помощью т. наз. межатомных векторов r jk , которые соединяют пары различных атомов (j и k) в молекулах: r jk = r j - r k . Картина рассеяния усредняется по всем ориентациям:

2 ТЕОРЕТИЧЕСКИЕ МЕТОДЫ

2.1 Полуэмпирические методы

Полуэмпирические методы квантовой химии, методы расчета мол. характеристик или свойств вещества с привлечением экспериментальных данных. По своей сути полуэмпирические методы аналогичны неэмпирическим методам решения уравнения Шрёдингера для многоатомных систем, однако для облегчения расчетов в полуэмпирических методах вводятся дополнит. упрощения. Как правило, эти упрощения связаны с валентным приближением, т. е. основаны на описании лишь валентных электронов, а также с пренебрежением определенными классами молекулярных интегралов в точных уравнениях того неэмпирического метода, в рамках которого проводится полуэмпирический расчет.

Выбор эмпирических параметров основан на обобщении опыта неэмпирических расчетов, учете химических представлений о строении молекул и феноменологических закономерностей. В частности, эти параметры необходимы для аппроксимации влияния внутренних электронов на валентные, для задания эффективных потенциалов, создаваемых электронами остова, и т.п. Использование экспериментальных данных для калибровки эмпирических параметров позволяет устранить ошибки, обусловленные упомянутыми выше упрощениями, однако лишь для тех классов молекул, представители которых служат опорными молекулами, и лишь для тех свойств, по которым параметры определялись.

Наиболее распространены полуэмпирические методы, основанные на представлениях о мол. орбиталях (см. Молекулярных орбиталей методы, Орбиталь). В сочетании с ЛКАО-приближением это позволяет выразить гамильтониан молекулы через интегралы на атомных орбиталях. При построении полуэмпирических методов в мол. интегралах выделяют произведения орбиталей, зависящих от координат одного и того же электрона (дифференциальное перекрывание), и пренебрегают некоторыми классами интегралов. Напр., если нулевыми считаются все интегралы, содержащие дифференциальное перекрывание cаcb при а. b, получается т. наз. метод полного пренебрежения дифференциала. перекрыванием (ППДП, в англ. транскрипции CNDO-complete neglect of differential overlap). Применяют также частичное или модифицированное частичное пренебрежение дифференциальное перекрыванием (соотв. ЧПДП или МЧПДП, в английской транскрипции INDO- intermediate neglect of differential overlap и MINDO-modified INDO), пренебрежение двухатомным дифференциальное перекрыванием - ПДДП, или neglect of diatomic differential overlap (NDDO), - модифицирование пренебрежение двухатомным перекрыванием (МПДП, или modified neglect of diatomic overlap, MNDO). Как правило, каждый из полуэмпирических методов имеет несколько вариантов, которые принято указывать в названии метода цифрой или буквой после косой черты. Напр., методы ППДП/2, МЧПДП/3, МПДП/2 параметризованы для расчетов равновесной конфигурации ядер молекулы в основном электронном состоянии, распределения заряда, потенциалов ионизации, энтальпий образования химических соединений, метод ЧПДП используется для расчета спиновых плотностей. Для расчета энергий электронного возбуждения применяют спектроскопическую параметризацию (метод ППДП/С). Распространено также использование в названиях полуэмпирических методов соответствующих программ для ЭВМ. Напр., один из расширенных вариантов метода МПДП называют Остинской моделью, как и соответствующую программу (Austin model, AM). Имеется несколько сотен различных вариантов полуэмпирических методов, в частности разработаны полуэмпирические методы, аналогичные конфигурационного взаимодействия методу. При внешних схожести разных вариантов полуэмпирических методов каждый из них можно применять для расчета лишь тех свойств, по которым проведена калибровка эмпирических параметров. В наиб. простых Полуэмпирических расчетах каждая мол. орбиталь для валентных электронов определяется как решение одноэлектронного уравнения Шрёдингера с оператором Гамильтона, содержащим модельный потенциал (псевдопотенциал) для электрона, находящегося в поле ядер и усредненном поле всех остальных электронов системы. Такой потенциал задают непосредственно с помощью элементарных функций или основанных на них интегральных операторов. В сочетании с ЛКАО-приближением подобный подход позволяет для многих сопряженных и ароматического мол. систем ограничиться анализом p-электронов (см. Хюккеля метод), для координационной соединений-пользоваться расчетными методами поля лигандов теории и кристаллического поля теории и т.п. При изучении макромолекул, напр. белков, или кристаллических образований нередко пользуются полуэмпирическими методами, в которых электронное строение не анализируется, а определяется непосредственно поверхность потенциальной энергии. Энергию системы приближенно считают суммой парных потенциалов взаимодействия атомов, напр. потенциалов Морса (Морзе) или Леннард-Джонса (см. Меж молекулярные взаимодействия). Такие полуэмпирические методы позволяют проводить расчет равновесной геометрии, конформационных эффектов, энергии изомеризации и т.п. Нередко парные потенциалы дополняют определенными для отдельных фрагментов молекулы многочастичными поправками. Полуэмпирические методы такого типа, как правило, относят к молекулярной механике. В более широком смысле к полуэмпирическим методам относятся любые методы, в которых определенные решением обратных задач параметры мол. системы используются для предсказаний новых экспериментальных данных, построения корреляционных соотношений. В этом смысле полуэмпирическими методами являются методы оценки реакционной способности, эффективных зарядов на атомах и т. п. Сочетание полуэмпирического расчета электронного строения с корреляц. соотношениями позволяет оценивать биологическую активность различных веществ, скорости химических реакций, параметры технологических процессов. К полуэмпирическим методам относятся и некоторые аддитивные схемы, напр. применяемые в химической термодинамике методы оценки энергии образования как суммы вкладов отдельных фрагментов молекулы. Интенсивное развитие полуэмпирических методов и неэмпирических методов квантовой химии делает их важными средствами современные исследования механизмов хим. превращений, динамики элементарного акта хим. реакции, моделирования биохимических и технологических процессов. При правильном использовании (с учетом принципов построения и способов калибровки параметров) полуэмпирические методы позволяют получить надежную информацию о строении и свойствах молекул, их превращениях.

2.2Неэмпирические методы

Принципиально иное направление расчетной квантовой химии, сыгравшее огромную роль в современном развитии химии в целом, состоит в полном или частичном отказе от вычисления одноэлектронных (3.18) и двухэлектронных (3.19)-(3.20) интегралов, фигурирующих в методе ХФ. Вместо точного оператора Фока используется приближенный, элементы которого получают эмпирическим путем. Параметры оператора Фока подбирают для каждого атома (иногда с учетом конкретного окружения) или для пар атомов: они либо являются фиксированными, либо зависят от расстояния между атомами. При этом часто (но не обязательно - см. ниже) предполагается, что многоэлектронная волновая функция является однодетерминантной, базис - минимальным, а атомные орбитали Х; - симметричными ортогональными комбинациями ОСТ Хг Такие комбинации легко получить, аппроксимируя исходные АО функциями Слейтера "Xj (2.41) с помощью преобразования Полуэмпирические методы работают гораздо быстрее, чем неэмпирические. Они применимы к большим (часто - к очень большим, например, биологическим) системам и для некоторых классов соединений дают более точные результаты. Однако следует понимать, что это достигается за счет специально подобранных параметров, справедливых лишь в пределах узкого класса соединений. При переносе на другие соединения те же методы могут дать абсолютно неверные результаты. Кроме того, параметры часто подбираются таким образом, чтобы воспроизводить только определенные молекулярные свойства, поэтому придавать физический смысл отдельным параметрам, используемым в схеме расчета, не следует. Перечислим основные приближения, используемые в полуэмпирических методах.

1.Рассматриваются только валентные электроны. Считают, что электроны, относящиеся к атомным остовам, лишь экранируют ядра. Поэтому влияние этих электронов учитывают, рассматривая взаимодействие валентных электронов с атомными остовами, а не с ядрами, и вводя энергию отталкивания остовов вместо энергии межъядерного отталкивания. Поляризацией остовов пренебрегают.

2. В МО учитывают только АО с главным квантовым числом, соответствующим высшим заселенным электронами орбиталям изолированных атомов (минимальный базис). Предполагают, что базисные функции образуют набор ортанормированных атомных орбиталей- ОСТ, ортогонализованных по Лёвдину.

3. Для двухэлектронных кулоновских и обменных интегралов вводят приближение нулевого дифференциального перекрывания (НДП) .

Молекулярной структуре в пределах структурной области может соответствовать набор модификаций молекулы, сохраняющих одинаковую систему валентных химических связей при разной пространствеиной организации ядер. В этом случае глубокий минимум ППЭ дополнительно имеет несколько неглубоких (эквивалентных или неэквивалентных по энергии) минимумов, разделенных небольшими потенциальными барьерами. Различные пространствеиные формы молекулы, преобразующиеся друг в друга в пределах данной структурной области путем непрерывного изменения координат атомов и функциональных групп без разрыва или образования химических связей, составляют множество конформаций молекулы. Набор конформаций, энергии которых меньше намнизшего барьера, примыкающего к данной структурной области ППЭ, называется конформационным изомером, или конформером. Конформеры, соответствующие локальным минимумам ППЭ, называются устойчивыми или стабильными. Таким образом, молекулярную структуру можно определить как совокупность конформаций молекулы в определенной структурной области Часто встречающимся в молекулах типом конформационного перехода является вращение отдельных групп атомов относительно связей: говорят, что имеет место внутреннее вращение, а различные конформеры называют вращательными изомерами, или ротамерами. При вращении меняется и электронная энергия, причем ее значение в процессе такого движения может проходить через максимум; в этом случае говорят о барьере внутреннего вращения. Последние во многом обусловлены способностью этих молекул легко адаптировать структуру при взаимодействии с разными системами. Каждому энергетическому минимуму ППЭ соответствует пара энантиомеров с одинаковой энергией - правый (R) и левый (S). Эти пары имеют энергии, отличающиеся всего на 3.8 ккал/моль, однако они разделены барьером высотой 25.9 ккалjмоль и, следовательно, весьма устойчивы при отсутствии внешних воздействий. Результаты квантово-химических расчетов энергий барьеров внутреннего вращения для некоторых молекул и соответствующие экспериментальные значения. Теоретические и экспериментальные величины барьеров вращения для связей С-С, С-Р, C-S отличаются всего на 0.1 ккал/моль; для связей С-0, C-N, C-Si, несмотря на использование базисного набора с включением поляризационных функций (см. ниже), разница заметно выше. 1"ем не менее, можно констатировать удовлетворительную точность расчета энергий барьеров внутреннего вращения методом ХФ.

Подобные расчеты энергий барьеров внутреннего вращения для простых молекул помимо спектроскопических приложений важны как критерий качества того или иного расчетного метода. Большого внимания заслуживает внутреннее вращение в сложных молекулярных системах, например, в полипептидах и белках, где этот эффект обусловливает мноmе биологически важные функции этих соединений. Вычисление поверхностей потенциальной энергии для таких объектов представляет собой сложную задачу как в теоретическом, так и в практическом плане. Распространенным видом конформационного перехода является инверсия, такая, какая имеет место в пирамидальных молекулах типа АХ3 (А= N, Si, Р, As, Sb; Х =Н, Li, F и др.). В этих молекулах атом А может занимать позиции как выше, так и ниже плоскости, образованной тремя атомами Х. Например, в молекуле аммиака NH3 метод ХФ дает величину энергетического барьера, равную 23,4 ккал/моль; это неплохо согласуется с экспериментальным значением барьера инверсии - 24.3 ккал/моль. Если барьеры между минимумами ППЭ сопоставимы с тепловой энергией молекулы, это приводит к эффекту структурной нежесткости молекулы; конформационные переходы в таких молекулах происходят постоянно. Для решения уравнений ХФ применяется метод самосогласованного поля. В процессе решения оптимизируются только орбитали, занятые электронами, следовательно, энергии лишь этих орбиталей находят физически обоснованно. Однако метод. ХФ дает и характеристики свободных орбиталей: такие молекулярные спин-орбитали называются виртуальными. К сожалению, они описывают возбужденные энергетические уровни молекулы с погрешностью около 100%, и применять их для трактовки спектроскопических данных следует с осторожностью - для этого существуют другие методы. Также как и для атомов, метод ХФ для молекул имеет различные версии, в зависимости от того, является ли однодетерминантная волновая функция собственной функцией оператора квадрата полного спина системы S2 или нет. Если волновая функция построена из пространствеиных орбиталей, занятых парой электронов с противоположными спинами (молекулы с замкнутыми оболочками), это условие выполняется, а метод называется ограниченным методом Хартри-Фока (ОХФ). Если требование быть собственной функцией оператора на волновую функцию не накладывается, то каждая молекулярная спин-орбиталь отвечает определенному спиновому состоянию (а или 13), то есть электроны с противоположными спинами занимают разные спин-орбитали. Такой метод обычно применяется для молекул с открытыми оболочками и называется неограниченным методом ХФ (НХФ), или методом разных орбиталей для разных спинов. Иногда низколежащие энергетические состояния описывают орбиталями, дважды занятыми электронами, а валентные состояния описывают однократно занятыми молекулярными спин-орбиталями; этот метод назьmается ограниченным методом Хартри-Фока для открытых оболочек (ОХФ- 00). Как и в атомах волновая функция молекул с открытыми оболочками не соответствует чистому спиновому состоянию, и могут возникать решения, у которых симметрия волновой функции по спину понижена. Они называются НХФ-нестабильными решениями.

2.3 Квантово-механические методы

Успехи теоретической химии, развитие квантовой механики создали возможность приближенных количественных расчетов молекул. Известно два важнейших метода расчета: метод электронных пар, называемый также методом валентных связей, и метод молекулярных орбит. Первый из этих методов, разработанный Гейтлером и Лондоном для молекулы водорода, приобрел широкое распространение в 30-х годах нынешнего столетия. В последние годы все большее значение приобретает метод молекулярных орбит (Гунд, Э. Хюккель, Мулликен,Герц-берг, Ленард-Джонс).

В этом приближенном методе расчета состояние молекулы описывается так называемой волновой функцией ш, которая составляется по определенному правилу из ряда слагаемых:

Сумма этих слагаемых должна учитывать все возможные комбинации, возникающие в результате попарного связывания атомов углерода за счет р-электронов.

Для того чтобы облегчить расчет волновой функции ш, отдельные слагаемые (C1ш1, C2ш2 и т. д.) условно изображаются графически в виде соответствующих валентных схем, которые используются как вспомогательные средства при математическом расчете. Например, когда указанным способом рассчитывают молекулу бензола и принимают во внимание только р-элек-троны, то таких слагаемых получается пять. Этим слагаемым соответствуют следующие валентные схемы:

Часто приведенные валентные схемы изображают с учетом у-связей, например для бензола

Такие валентные схемы называют «невозмущенными структурами» или «предельными структурами»

Функции ш1, ш2, ш3 и т. д. различных предельных структур входят в волновую функцию ш с тем большими коэффициентами (с тем большим весом), чем меньше энергия, рассчитанная для соответствующей структуры. Электронное состояние, соответствующее волновой функции ш, наиболее устойчиво сравнительно с электронными состояниями, изображаемыми функциями ш1, ш2, ш3 и т. д.; энергия же состояния, изображаемого функцией ш (реальной молекулы), естественно, является наименьшей сравнительно с энергиями предельных структур.

При расчете молекулы бензола по методу электронных пар учитываются пять предельных структур (I--V). Две из них тождественны классической структурной формуле Кекуле и три--формуле Дьюара. Так как энергия электронных состояний, соответствующих предельным структурам III, IV и V, выше, чем для структур I и II, то вклад структур III, IV и V в смешанную волновую функцию молекулы бензола шменьше, чем вклад структур I и II. Поэтому в первом приближении для изображения распределения электронной плотности в молекуле бензола достаточно двух эквивалентных структур Кекуле.

Около тридцати лет назад Л. Полинг развил качественные эмпирические представления, имеющие некоторые аналогии с методом электронных пар; эти представления были им названы теорией резонанса. Согласно основному постулату этой теории, любая молекула, для которой можно написать несколько классических структурных формул, не может быть правильно изображена ни одной из этих отдельно взятых формул (предельных структур), а только их набором. Качественная картина распределения электронной плотности в реальной молекуле описывается суперпозицией предельных структур (каждая из которых представлена с определенным весом).

Предельные структуры не соответствуют каким-либо реальным электронным состояниям в невозбужденных молекулах, однако не исключено, что они могут осуществляться в возбужденном состоянии или в момент реакции.

Вышеизложенная качественная сторона теории резонанса совпадает с концепцией мезомерии, несколько ранее развитой Инголдом и независимо от него Арндтом.

Согласно этой концепции, истинное состояние молекулы является промежуточным («мезомерным») между состояниями, изображенными двумя или несколькими «предельными структурами», которые можно написать для данной молекулы, пользуясь правилами валентности.

Кроме этого основного положения теории мезомерии, к ее аппарату относятся хорошо разработанные представления об электронных смещениях, в обосновании, интерпретации и опытной проверке которых важная роль принадлежит Инголду. Согласно Инголду, механизмы электронных смещений (электронных эффектов) различны в зависимости от того, осуществляется ли взаимное влияние атомов через цепь простых или сопряженных двойных связей. В первом случае это -- индукционный эффект I (или также статический индукционный эффект Is), во втором случае -- мезомерный эффект М (статический эффект сопряжения).

В реагирующей молекуле электронное облако может поляризоваться по индукционному механизму; такое электронное смещение называется индуктомерным эффектом Id. В молекулах с сопряженными двойными связями (и в ароматических молекулах) поляризуемость электронного облака в момент реакции обусловлена электромерным эффектом E (динамический эффект сопряжения).

Теория резонанса не вызывает никаких принципиальных возражений, пока речь идет о способах изображения молекул, но она имеет и большие претензии. Аналогично тому, как в методе электронных, пар волновая функция описывается линейной комбинацией других волновых функций ш1, ш2, ш3 и т. д., теория резонанса предлагает описывать истинную волновую функцию шмолекулы в виде линейной комбинации волновых функций предельных структур.

Однако математика не дает критериев для выбора тех или иных «резонансных структур»: ведь в методе электронных пар волновую функцию можно представить не только как линейную комбинацию волновых функций ш1, ш2, ш3 и т. д., но и как линейную комбинацию любых других функций, подобранных с определенными коэффициентами. Выбор же предельных структур может быть сделан только на основе химических соображений и аналогий, т. е. здесь концепция резонанса по существу не дает ничего нового по сравнению с концепцией мезомерии.

При описании распределения электронной плотности в молекулах с помощью предельных структур необходимо постоянно иметь в виду, что отдельно взятые предельные структуры не соответствуют какому-либо реальному физическому состоянию и что никакого физического явления «электронного резонанса» не существует.

Из литературы известны многочисленные случаи, когда сторонники концепции резонанса приписывали резонансу смысл физического явления и считали, что за определенные свойства веществ ответственны те или иные отдельные предельные структуры. Возможность возникновения таких ошибочных представлений заложена во многих пунктах концепции резонанса. Так, когда говорят о «различных вкладах предельных структур» в реальное состояние молекулы, легко может возникнуть представление о реальном существовании этих соотношений. Реальная молекула в концепции резонанса считается «резонансным гибридом»; этот термин может навести на мысль о якобы реальном взаимодействии предельных структур, подобно гибридизации атомных орбит.

Неудачен также термин «стабилизация за счет резонанса», так как стабилизация молекулы не может быть обусловлена несуществующим резонансом, а представляет собой физическое явление делокализации электронной плотности, характерное для сопряженных систем. Целесообразно поэтому это явление называть стабилизацией за счет сопряжения. Энергия сопряжения (энергия делокализации, или энергия мезомерии) может быть определена экспериментальным путем, независимо от «энергии резонанса», вытекающей из квантово-механических расчетов. Это -- разность между энергией, вычисленной для гипотетической молекулы с формулой, соответствующей одной из предельных структур, и энергией, найденной экспериментально для реальной молекулы.

С указанными выше оговорками способ описания распределения электронной плотности в молекулах с помощью нескольких предельных структур несомненно может быть использован наряду с двумя другими также весьма распространенными способами.

2.4 Метод Хюккеля

Хюккеля метод, квантовохимический метод приближенного расчета энергетических уровней и мол. орбиталей ненасыщенных орг. соединений. Основан на предположении, согласно которому движение электрона вблизи атомного ядра в молекуле не зависит от состояний или числа др. электронов. Это позволяет максимально упростить задачу определения мол. орбиталей (МО) в представлении линейной комбинацией атомных орбиталей. Метод предложен Э. Хюккелем в 1931 для расчета электронного строения углеводородов с сопряженными связями. Считается, что атомы углерода сопряженной системы лежат в одной плоскости, относительно которой высшие занятые и низшие виртуальные (свободные) МО (граничные мол. орбитали) антисимметричны, т. е. являются орбиталями, образованными атомными 2рz-орбиталями (АО) соответствующих атомов С. Влиянием остальных атомов, напр. Н, или мол. фрагментов с насыщенными связями пренебрегают. Предполагается, что каждый из М атомов углерода сопряженной системы вносит в систему один электрон и описывается одной атомной 2рz-орбиталью(k = 1, 2, ..., М). Простая модель электронного строения молекулы, даваемая Хюккеля методом, позволяет понять многие хим. явления. Например неполярность альтернантных углеводородов обусловлена тем, что эффективные заряды на всех атомах углерода равны нулю. Напротив, неальтернантная конденсированная система 5- и 7-членного циклов (азулен) имеет дипольный момент ок. 1Д (3.3 x 10 -30 Кл x м). В нечетных альтернантных углеводородах основное энергетическое. состояние отвечает электронной системе, в которой есть хотя бы одна однократно занятая орбиталь. Можно показать, что энергия этой орбитали та же, что и в свободном атоме, в связи с чем она наз. несвязывающей МО. Удаление или добавление электрона изменяет заселенность лишь несвязывающей орбитали, что влечет появление заряда на некоторых атомах, который пропорционален квадрату соответствующего коэффициент в разложении несвязывающей МО по АО. Для определения такой МО применяют простое правило: сумма коэффициент Ck для всех атомов, соседних с любым данным, должна быть равна нулю. Кроме того, значения коэффициент должны отвечать дополнит. условию нормировки: Это приводит к характерному чередованию (альтернированию) зарядов на атомах в мол. ионах альтернантных углеводородов. В частности, указанное правило объясняет выделение по хим. свойствам орто- и пара-положений в бензольном ядре по сравнению с мета-положением. Закономерности, установленные в рамках простого Хюккеля метода, искажаются при более полном учете всех взаимодействие в молекуле. Однако обычно влияние множества разнородных дополнит, факторов (например электронов остова, заместителей, межэлектронного отталкивания и т. п.) качественно не меняет орбитальную картину электронного распределения. Поэтому Хюккеля метод часто используют для моделирования сложных механизмов реакций с участием орг. соединений. При введении в молекулу гетероатомов (N, О, S, ...) существенными становятся параметры матрицы H, принимаемые для гетероатома и для атомов углерода. В отличие от случая полиенов, разные типы атомов или связей описываются разными параметрами или и их соотношение существенно влияет на вид МО; качество предсказаний, получаемых в рамках простого Хюккеля метода, как правило, в итоге ухудшается. Простой по своей идее, наглядный и не требующий сложных вычислений Хюккеля метод является одним из наиболее распространенных средств создания квантовохимической модели электронного строения сложных мол. систем. Наиб. эффективно его применение в тех случаях, когда свойства молекулы определяются в основные топологические структурой хим. связей, в частности симметрией молекулы. Попытки построить улучшенные варианты Хюккеля метода в рамках простых молекулярных орбиталей методов имеют мало смысла, т. к. приводят к методикам расчета, сравнимым по сложности с более точными методами квантовой химии.

Заключение

В настоящее время создана «целая отрасль науки -- квантовая химия, занимающаяся приложением квантово-механических методов к химическим проблемам. Однако было бы принципиально ошибочным думать, что все вопросы строения и реакционной способность органических соединений могут быть сведены к задачам квантовой механики. Квантовая механика изучает законы движения электронов и ядер, т. е. законы низшей формы движения, сравнительно с той, которую изучает химия (движение атомов и молекул), а высшая форма движения никогда не может быть сведена к низшей. Даже для весьма простых молекул такие вопросы, как реакционная способность веществ, механизм и кинетика их превращений, не могут быть изучены только методами квантовой механики. Основой изучения химической формы движения материи являются химические методы исследования, и ведущая роль в развитии химии принадлежит теории химического строения.

Список использованных источников

1. Минкин, В.И. Теория строения молекул/ В.И. Минкин. -М.:Высш.шк., 2006- 640с.

2. Вилков, Л.В. Физические методы исследования в химии./ Л.В. Вилков, Ю.А. Пентин. - М.:Высш.шк., 2005-380с.

3. Гардымова, А.П. Научная электронная библиотека: элементы и устройства вычислительной техники и систем управления / А.П. Гардымова. - 2005.

4. Ельяшевич, М.А. Атомная и молекулярная спектроскопия/ М.А. Ельяшевич, В. Демтредер. -М.: Мир, 1989-260с.

5. Блатов, В.А. Полуэмпирические расчетные методы/ В.А. Блатов, А.П. Шевченко. - М.: «Универс- групп» 2005-315с.

6. Цирельсон, В.Г. Квантовая химия, молекулы, молекулярные системы и твердые тела -М.: «БИНОМ» 2010-496с.

Размещено на Allbest.ru

Подобные документы

    Основные положения атомно-молекулярного учения. Закономерности броуновского движения. Вещества атомного строения. Основные сведения о строении атома. Тепловое движение молекул. Взаимодействие атомов и молекул. Измерение скорости движения молекул газа.

    презентация , добавлен 18.11.2013

    Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

    презентация , добавлен 18.05.2011

    Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат , добавлен 11.08.2014

    Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.

    лабораторная работа , добавлен 11.02.2011

    Основные положения молекулярной теории строения вещества. Скорость движения молекул вещества. Переход вещества из газообразного состояния в жидкое. Процесс интенсивного парообразования. Температура кипения и давление. Поглощение теплоты при кипении.

    презентация , добавлен 05.02.2012

    Возникновение представлений о строении вещества: молекула - мельчайшая частица; понятие диффузии. Притяжение и отталкивание молекул, агрегатные состояния веществ. Особенности молекулярного строения твердых тел, жидкостей и газов, кристаллическая решетка.

    реферат , добавлен 10.12.2010

    Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.

    реферат , добавлен 06.06.2011

    Изучение процессов рассеяния заряженных и незаряженных частиц как один из основных экспериментальных методов исследования строения атомов, атомных ядер и элементарных частиц. Борновское приближение и формула Резерфорда. Фазовая теория рассеяния.

    курсовая работа , добавлен 03.05.2011

    Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация , добавлен 28.05.2013

    Основы сканирующей электронной микроскопии. Методические особенности электронно-микроскопического исследования металлических расплавов. Особенности микроскопов, предназначенных для исследования структуры поверхностных слоев металлических расплавов.