Реакции декарбоксилирования в цикле кребса. Цикл трикарбоновых кислот (ЦТК). Биологическое значение ЦТК. Челночные механизмы переноса водорода. Реакции цикла Кребса

  • Общее представление. Характеристика этапов ЦТК.
  • Конечные продукты ЦТК.
  • Биологическая роль ЦТК.
  • Регуляция ЦТК.
  • Нарушения работы ЦТК.

· ОБЩЕЕ ПРЕДСТАВЛЕНИЕ. ХАРАКТЕРИСТИКА ЭТАПОВ ЦТК

Цикл трикарбоновых кислот (ЦТК) представляет собой магистральный, циклический, метаболический путь , в котором происходит окисление активной уксусной кислоты и некоторых других соединений, образующихся при распаде углеводов, липидов, белков и который обеспечивает дыхательную цепь восстановленными коферментами.

ЦТК был открыт в 1937 году Г. Кребсом . Он обобщил имевшиеся к тому времени экспериментальные исследования и построил полную схему процесса.

Реакции ЦТК протекают в митохондриях в аэробных условиях .

В начале цикла (рис. 6) происходит конденсация активной уксусной кислоты (ацетил-КоА) со щавелево-уксусной кислотой (оксалоацетатом) с образованием лимонной кислоты (цитрата) . Эта реакция катализируется цитратсинтазой .

Далее цитрат изомеризуется в изоцитрат . Изомеризация цитрата осуществляется путем дегидратации с образованием цис-аконитата и его последующей гидратацией. Катализ обеих реакций обеспечивает аконитаза .

На 4-й стадии цикла происходит окислительное декарбоксилирование изоцитрата под действием изоцитратдегидрогеназы (ИЦДГ) с образованием a-кетоглутаровой кислоты , НАДН(Н +) или НАДФН(Н +) и СО 2. НАД-зависимая ИДГ локализована в митохондриях, а НАДФ-зависимый фермент присутствует в митохондриях и цитоплазме.

В ходе 5-й стадии осуществляется окислительное декарбоксилирование a-кетоглутарата с образованием активной янтарной кислоты (сукцинил-КоА) , НАДН(Н) и СО 2 . Этот процесс катализирует a-кетоглутаратдегидрогеназный комплекс , состоящий из трех ферментов и пяти коферментов. Ферменты: 1) a-кетоглутаратдегидрогеназа, связанная с коферментом ТПФ; 2) транссукцинилаза, коферментом которой является липоевая кислота;

3) дигидролипоилдегидрогеназа, связанная с ФАД. В работе a-кетоглутаратдегидрогеназ-

ного комплекса принимают участие также коферменты КоА-SH и НАД.



На 6-й стадии происходит расщепление макроэргической тиоэфирной связи сукцинил-КоА, сопряженное с фосфорилированием ГДФ. Образуются янтарная кислота (сукцинат) и ГТФ (на уровне субстратного фосфорилирования) . Реакция катализируется сукцинил-КоА-синтетазой (сукцинилтиокиназой) . Фосфорильная группа ГТФ может переноситься на АДФ: ГТФ +АДФ ® ГДФ + АТФ . Катализ реакции происходит при участии фермента нуклеозиддифосфокиназы.

В ходе 7-й стадии осуществляется окисление сукцината под действием сукцинатдегидрогеназы с образованием фумарата и ФАДН 2 .

На 8-й стадии фумаратгидратаза обеспечивает присоединение воды к фумаровой кислоте с образованием L - яблочной кислоты (L- малата) .

L-малат на 9-й стадии под действием малатдегидрогеназы окисляется до оксалоацетата , в реакции также образуется НАДН(Н +). На оксалоацетате метаболический путь замыкается и снова повторяется , приобретая циклический характер.

Рис. 6. Схема реакций цикла трикарбоновых кислот.

· КОНЕЧНЫЕ ПРОДУКТЫ ЦТК

Суммарное уравнение ЦТК имеет следующий вид:

// О

СН 3 – С~ S-КоА + 3 НАД + + ФАД + АДФ + Н 3 РО 4 + 3 Н 2 О ®

® 2 СО 2 + 3 НАДН(Н +) + ФАДН 2 + АТФ + КоА-SH

Таким образом конечными продуктами цикла (в расчете на 1 оборот) являются восстановленные коферменты - 3 НАДН(Н +) и 1 ФАДН 2 , 2 молекулы углекислого газа, 1 молекула АТФ и 1 молекула КоА- SH.

· БИОЛОГИЧЕСКАЯ РОЛЬ ЦТК

Цикл Кребса выполняет интеграционную, амфиболическую (т.е. катаболическую и анаболическую ), энергетическую и водороддонорную роль.

Интеграционная роль состоит в том, что ЦТК представляет собой конечный общий путь окисления топливных молекул – углеводов, жирных кислот и аминокислот.

В ЦТК происходит окисление ацетил-КоА – это катаболическая роль .

Анаболическая роль цикла заключается в том, что он поставляет промежуточные продукты для биосинтетических процессов. Например, оксалоацетат используется для синтеза аспартата, a-кетоглутарат – для образования глутамата , сукцинил-КоА – для синтеза гема .

Одна молекула АТФ образуется в ЦТК на уровне субстратного фосфорилирования – это энергетическая роль.

Водороддонорная рольсостоит в том, что ЦТК обеспечивает восстановленными коферментами НАДН(Н +) и ФАДН 2 дыхательную цепь, в которой происходит окисление водорода этих коферментов до воды, сопряженное с синтезом АТФ. При окислении одной молекулы ацетил-КоА в ЦТК образуются 3 НАДН(Н +) и 1 ФАДН 2

Выход АТФ при окислении ацетил-КоА составляет 12 молекул АТФ (1 АТФ в ЦТК на уровне субстратного фосфорилирования и 11 молекул АТФ при окислении 3 молекул НАДН(Н +) и 1 молекулы ФАДН 2 в дыхательной цепи на уровне окислительного фосфорилирования).

· РЕГУЛЯЦИЯ ЦТК

Скорость функционирования ЦТК точно подогнана к потребности клеток в АТФ, т.е. цикл Кребса сопряжен с дыхательной цепью, функционирующей только в аэробных условиях. Важной регуляторной реакцией цикла является синтез цитрата из ацетил-КоА и оксалоацетата, протекающий при участии цитратсинтазы . Высокий уровень АТФ ингибирует данный фермент. Вторая регуляторная реакция цикла – изоцитратдегидрогеназная . АДФ и НАД + активируют фермент, НАДН(Н +) и АТФ ингибируют . Третьей регуляторной реакцией является окислительное декарбоксилирование a-кетоглутарата . НАДН(Н +),сукцинил-КоА и АТФ ингибируют a-кетоглутаратдегидрогеназу.

· НАРУШЕНИЯ РАБОТЫ ЦТК

Нарушение функционирования ЦТК может быть связано:

С недостатком ацетил-КоА;

С недостатком оксалоацетата (он образуется при карбоксилировании пирувата, а последний в свою очередь при распаде углеводов). Несбалансированность рациона по углеводам влечет за собой включение ацетил-КоА в кетогенез (образование кетоновых тел), что приводит к кетозам;

С нарушением активности ферментов по пичине недостатка витаминов, входящих в состав соответствующих коферментов (недостаток витамина В 1 приводит к недостатку ТПФ и нарушению функционирования a-кетоглутаратдегидрогеназного комплекса; недостаток витамина В 2 ведет к недостатку ФАД и нарушению активности сукцинатдегидрогеназы; недостаток витамина В 3 влечет за собой недостаток кофермента ацилирования КоА-SH и нарушение активности a-кетоглутаратдегидрогеназного комплекса; недостаток витамина В 5 приводит к недостатку НАД и нарушению активности изоцитратдегидрогеназы, a-кетоглутаратдегидрогеназного комплекса и малатдегидрогеназы; недостаток липоевой кислоты также приводит к нарушению функционирования a-кетоглутаратдегидрогеназного комплекса);

С недостатком кислорода (нарушен синтез гемоглобина и функционирование дыхательной цепи, а накапливающийся НАДН(Н +) выступает в этом случае в роли аллостерического ингибитора изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназного комплекса)

· кОнТрольные вопросы

Образующийся в ПВК-дегидрогеназной реакции ацетил-SКоА далее вступает в цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса). Кроме пирувата, в цикл вовлекаются кетокислоты, поступающие из катаболизма аминокислот или каких-либо иных веществ.

Цикл трикарбоновых кислот

Цикл протекает в матриксе митохондрий и представляет собой окисление молекулы ацетил-SКоА в восьми последовательных реакциях.

В первой реакции связываются ацетил и оксалоацетат (щавелевоуксусная кислота) с образованием цитрата (лимонной кислоты), далее происходит изомеризация лимонной кислоты до изоцитрата и две реакции дегидрирования с сопутствующим выделением СО 2 и восстановлением НАД.

В пятой реакции образуется ГТФ, это реакция субстратного фосфорилирования . Далее последовательно происходит ФАД-зависимое дегидрирование сукцината (янтарной кислоты), гидратация фумаровой кислоты до малата (яблочная кислота), далее НАД-зависимое дегидрирование с образованием в итоге оксалоацетата .

В итоге после восьми реакций цикла вновь образуется оксалоацетат.

Последние три реакции составляют так называемый биохимический мотив (ФАД-зависимое дегидрирование, гидратация и НАД-зависимое дегидрирование, он используется для введения кетогруппы в структуру сукцината. Этот мотив также присутствует в реакциях β-окисления жирных кислот . В обратной последовательности (восстановление, де гидратация и восстановление) этот мотив наблюдается в реакциях синтеза жирных кислот .

Функции ЦТК

1. Энергетическая

  • генерация атомов водорода для работы дыхательной цепи , а именно трех молекул НАДН и одной молекулы ФАДН2 ,
  • синтез одной молекулы ГТФ (эквивалентна АТФ).

2. Анаболическая . В ЦТК образуются

  • предшественник гема – сукцинил-SКоА ,
  • кетокислоты, способные превращаться в аминокислоты – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой,
  • лимонная кислота , используемая для синтеза жирных кислот ,
  • оксалоацетат , используемый для синтеза глюкозы .

Анаболические реакции ЦТК

Регуляция цикла трикарбоновых кислот

Аллостерическая регуляция

Ферменты, катализирующие 1-ю, 3-ю и 4-ю реакции ЦТК, являются чувствительными к аллостерической регуляции метаболитами:

Регуляция доступностью оксалоацетата

Главным и основны регулятором ЦТК является оксалоацетат , а точнее его доступность. Наличие оксалоацетата вовлекает в ЦТК ацетил-SКоА и запускает процесс.

Обычно в клетке имеется баланс между образованием ацетил-SКоА (из глюкозы, жирных кислот или аминокислот) и количеством оксалоацетата. Источником оксалоацетата является пируват , (образуемый из глюкозы или аланина), получение из аспарагиновой кислоты в результате трансаминирования или цикла АМФ-ИМФ, и также поступление из фруктовых кислот самого цикла (янтарной, α-кетоглутаровой, яблочной, лимонной), которые могут образоваться при катаболизме аминокислот или поступать из других процессов.

Синтез оксалоацетата из пирувата

Регуляция активности фермента пируваткарбоксилазы осуществляется при участии ацетил-SКоА . Он является аллостерическим активатором фермента, и без него пируваткарбоксилаза практически неактивна. Когда ацетил-SКоА накапливается, то фермент начинает работать и образуется оксалоацетат, но, естественно, только при наличии пирувата.

Также большинство аминокислот при своем катаболизме способны превращаться в метаболиты ЦТК, которые далее идут в оксалоацетат, чем также поддерживается активность цикла.

Пополнение пула метаболитов ЦТК из аминокислот

Реакции пополнения цикла новыми метаболитами (оксалоацетат, цитрат, α-кетоглутарат и т.п) называются анаплеротическими .

Роль оксалоацетата в метаболизме

Примером существенной роли оксалоацетата служит активация синтеза кетоновых тел и кетоацидоз плазмы крови при недостаточном количестве оксалоацетата в печени . Такое состояние наблюдается при декомпенсации инсулинзависимого сахарного диабета (СД 1 типа) и при голодании. При указанных нарушениях в печени активирован процесс глюконеогенеза , т.е. образования глюкозы из оксалоацетата и других метаболитов, что влечет за собой снижение количества оксалоацетата. Одновременная активация окисления жирных кислот и накопление ацетил-SКоА запускает резервный путь утилизации ацетильной группы – синтез кетоновых тел . В организме при этом развивается закисление крови (кетоацидоз ) с характерной клинической картиной: слабость, головная боль, сонливость, снижение мышечного тонуса, температуры тела и артериального давления.

Изменение скорости реакций ЦТК и причины накопления кетоновых тел при некоторых состояниях

Описанный способ регуляции при участии оксалоацетата является иллюстрацией к красивой формулировке "Жиры сгорают в пламени углеводов ". В ней подразумевается, что "пламень сгорания" глюкозы приводит к появлению пирувата, а пируват превращается не только в ацетил-SКоА, но и в оксалоацетат. Наличие оксалоацетата гарантирует включение ацетильной группы, образуемой из жирных кислот в виде ацетил-SКоА, в первую реакцию ЦТК.

В случае масштабного "сгорания" жирных кислот, которое наблюдается в мышцах при физической работе и в печени при голодании , скорость поступления ацетил-SКоА в реакции ЦТК будет напрямую зависеть от количества оксалоацетата (или окисленной глюкозы).

Если количество оксалоацетата в гепатоците недостаточно (нет глюкозы или она не окисляется до пирувата), то ацетильная группа будет уходить на синтез кетоновых тел . Такое происходит при длительном голодании и сахарном диабете 1 типа .

Цикл лимонной кислоты (цикл трикарбоновых кислот – ЦТК, цикл Кребса) представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляется катаболизм ацетильных групп и высвобождение восстановительных эквивалентов; при окислении последних в ЭТЦ поставляется свободная энергия, кумулируемая в АТФ. Цикл запускается оксалоацетатом, который синтезируется из ПВК под действием пируваткарбоксилазы.

Молекула ацетил-КоА, полученная в окислительном декарбоксилировании ПВК и β-окислении ВЖК, взаимодействует с ОА; в результате генерируется 6-тиуглеродная трикарбоновая кислота — лимонная (цитрат) (Рис. 3.8). Далее в серии реакций происходит высвобождение двух молекул углекислого газа и регенерация оксалоацетата. Поскольку количество последнего, необходимое для преобразования большого числа ацетильных групп, весьма невелико, можно считать, что это соединение выполняет каталитическую функцию.

В ЦТК, благодаря активности ряда специфических дегидрогеназ, происходит образование восстановительных эквивалентов в форме протонов и электронов, индуцирующих дыхательную цепь, при функционировании которой синтезируется АТФ

Образование макроэргических соединений в ЦТК

Окисляемый

субстрат

Фермент,

катализирующий

Место образования макроэргов и характер сопряженного процесса Число синтезированных молекул АТФ
Изоцитрат ИзоцитратДГ 3
α-Кетоглутарат α–кетоглутаратДГ Окисление НАДН в дыхательной цепи 3
Сукцинилфосфат Сукцинаттиокиназа Синтез АТФ на субстратном уровне 1
Сукцинат СукцинатДГ Окисление ФАДН 2 в дыхательной цепи 2
Малат МалатДГ Окисление НАДН в дыхательной цепи 3
Итого 12

Таким образом, каждый цикл обеспечивает синтез 12 молекул макроэргов.

Биологические функции цикла Кребса

ЦТК является общим конечным путем окислительного распада углеводов, липидов, белков, поскольку в ходе метаболизма глюкоза, ЖК, глицерин, аминокислоты и ациклические азотистые основания превращаются либо в ацетил–КоА, либо в метаболиты этого процесса, являющиеся источниками восстановительных эквивалентов, запускающих ЭТЦ и окислительное фосфорилирование, тем самым обеспечиваются энергетические запросы различных органов и тканей, и постоянная температура тела. Эндогенная вода образуется также, как известно, за счет биологического окисления, субстратами которого служат метаболиты ЦТК. Промежуточные продукты ЦТК могут использоваться в анаболизме: ОА и его предшественники служат субстратами в ГНГ; из α–кетоглутарата и ОА с помощью переаминирования легко получить аминокислоты; сукцинил–КоА необходим для синтеза гема; избыточный цитрат, выйдя из митохондрий, отщепляет ацетил-КоА, из которого генерируются ВЖК, ХС, ацетилхолин, производные моносахаридов (мономеров гетерополисахаридов).

У человека не описаны генетически обусловленные повреждения ферментов, катализирующих его различные стадии, т.к. возникновение подобных нарушений несовместимо с нормальным развитием организма.

Цикл трикарбоновых кислот был открыт в 1937 г. Г. Кребсом. В этой связи он получил название “цикл Кребса”. Данный процесс является цент-ральным путем метаболизма. Он происходит в клетках организмов, стоящих на разных ступенях эволюционного развития (микроорганизмы, растения, животные).

Исходным субстратом цикла трикарбоновых кислот является ацетил-коэнзим А. Этот метаболит представляет собой активную форму уксусной кислоты. Уксусная кислота выступает в качестве общего промежуточного продукта распада почти всех органических веществ, содержащихся в клетках живых организмов. Это связано с тем, что органические молекулы являются соединениями углерода, которые естественно могут распадаться до двухуглеродных фрагментов уксусной кислоты.

Свободная уксусная кислота обладает сравнительно слабой реакционной способностью. Ее превращения происходят в довольно жестких условиях, которые нереальны в живой клетке. Поэтому в клетках происходит активация уксусной кислоты путем ее соединения с коэнзимом А. В результате образуется метаболически активная форма уксусной кислоты – ацетил-коэнзим А.

Коэнзим А представляет собой низкомолекулярное соединение, которое состоит из фосфоаденозина, остатка пантотеновой кислоты (витамина В3) и тиоэтаноламина. Остаток уксусной кислоты присоединяется к сульфгидрильной группе тиоэтаноламина. При этом образуется тиоэфир – ацетил-коэнзим А, представляющий собой исходный субстрат цикла Кребса.

Ацетил-коэнзим А

Схема превращения промежуточных продуктов в цикле Кребса представлена на рис. 67. Процесс начинается с конденсации ацетил-коэнзима А с оксалоацетатом (щавелевоуксусной кислотой, ЩУК), в результате которой образуется лимонная кислота (цитрат). Реакция катализируется ферментом цитратсинтазой.

Рисунок 67 – Схема превращения промежуточных продуктов в цикле

трикарбоновых кислот

Далее под действием фермента аконитазы лимонная кислота превращается в изолимонную. Изолимонная кислота подвергается процессам окисления и декарбоксилирования. В этой реакции, катализируемой ферментом НАД-зависимой изоцитратдегидрогеназы, в качестве продуктов образуются углекислый газ, восстановленный НАД, а также a-кетоглутаровая кислота, которая затем вовлекается в процесс окислительного декарбоксилирования (рис. 68).

Рисунок 68 – Образование a-кетоглутаровой кислоты в цикле Кребса

Процесс окислительного декарбоксилирования a-кетоглутарата катализируется ферментами a-кетоглутаратдегидрогеназного мультиферментного комплекса. Этот комплекс состоит из трех различных ферментов Для его функционирования требуются коферменты. Коферменты a-кето-глутаратдегидрогеназного комплекса включают следующие водорастворимые витамины:

· витамин В 1 (тиамин) – тиаминпирофосфат;

· витамин В 2 (рибофлавин) – ФАД;

· витамин В 3 (пантотеновая кислота) – коэнзим А;

· витамин В 5 (никотинамид) – НАД;

· витаминоподобное вещество – липоевую кислоту.

Схематически процесс окислительного декарбоксилирования a-кето-глутаровой кислоты можно представить в виде следующего балансового уравнения реакции:


Продуктом этого процесса является тиоэфир остатка янтарной кис-лоты (сукцината) с коэнзимом А – сукцинил-коэнзим А. Тиоэфирная связь сукцинил-коэнзима А является макроэргической.

Следующая реакция цикла Кребса представляет собой процесс субстратного фосфорилирования. В ней происходит гидролиз тиоэфирной связи сукцинил-коэнзима А под действием фермента сукцинил-КоА-синтетазы с образованием янтарной кислоты (сукцината) и свободного коэнзима А. Этот процесс сопровождается освобождением энергии, которая тут же используется для фосфорилирования ГДФ, в результате которого образуется молекула макроэргического фосфата ГТФ. Субстратное фосфорилирование в цикле Кребса:

где Ф н – ортофосфорная кислота.

Образующийся в процессе окислительного фосфорилирования ГТФ может использоваться в качестве источника энергии в различных энергозависимых реакциях (в процессе биосинтеза белка, активации жирных кислот и др.). Помимо этого, ГТФ может использоваться для образования АТФ в нуклеозиддифосфаткиназной реакции

Продукт сукцинил-КоА-синтетазной реакции – сукцинат далее окисляется с участием фермента сукцинатдегидрогеназы. Этот энзим представляет собой флавиновую дегидрогеназу, в состав которой в качестве кофермента (простетической группы) входит молекула ФАД. В результате реакции янтарная кислота окисляется в фумаровую. Одновременно с этим происходит восстановление ФАД.

где Е – ФАД простетическая группа, связанная с полипептидной цепью фермента.

Образовавшаяся в сукцинатдегидрогеназной реакции фумаровая кислота, под действием фермента фумаразы (рис. 69), присоединяет молекулу воды и превращается в яблочную кислоту, которая затем окисляется в малатдегидрогеназной реакции в щавелево-уксусную кислоту (оксалоацетат). Последний может вновь использоваться в цитратсинтазной реакции для синтеза лимонной кислоты (рис. 67). За счет этого превращения в цикле Кребса имеют циклический характер.

Рисунок 69 – Метаболизм яблочной кислоты в цикле Кребса

Балансовое уравнение цикла Кребса может быть представлено в виде:

Из него видно, что в цикле происходит полное окисление ацетильного радикала остатка из ацетил-коэнзима А до двух молекул СО 2 . Этот процесс сопровождается образованием трех молекул восстановленного НАД, одной молекулы восстановленного ФАД и одной молекулы макроэргичес-кого фосфата – ГТФ.

Цикл Кребса происходит в матриксе митохондрий. Это связано с тем, что именно здесь находится большинство его ферментов. И только единственный фермент – сукцинатдегидрогеназа – встроен во внутреннюю митохондриальную мембрану. Отдельные энзимы цикла трикарбоновых кислот объединены в функциональный полиферментный комплекс (метаболон), связанный с внутренней поверхностью внутренней митохондриальной мембраны. За счет объединения ферментов в метаболон существенно повышается эффективность функционирования данного метаболического пути и появляются дополнительные возможности для его тонкой регуляции.

Особенности регуляции цикла трикарбоновых кислот во многом определяются его значением. Этот процесс выполняет следующие функции:

1) энергетическую. Цикл Кребса представляет собой наиболее мощный источник субстратов (восстановленных коферментов – НАД и ФАД) для тканевого дыхания. Помимо этого в нем происходит запасание энергии в форме макроэргического фосфата – ГТФ;

2) пластическую . Промежуточные продукты цикла Кребса являются предшественниками для синтеза различных классов органических веществ – аминокислот, моносахаридов, жирных кислот и т.д.

Таким образом, цикл Кребса выполняет двойственную функцию: с одной стороны, он является общим путем катаболизма, играющим центральную роль в энергетическом обеспечении клетки, а с другой, – обеспечивает биосинтетические процессы субстратами. Подобные обменные процессы получили название амфиболических. Цикл Кребса представляет собой типичный амфиболический цикл.

Регуляция обменных процессов в клетке тесно связана с существованием “ключевых” ферментов. Ключевыми являются те ферменты процесса, которые определяют его скорость. Как правило, одним из “ключевых” ферментов процесса является энзим, катализирующий его начальную реакцию.

Для “ключевых” ферментов характерны следующие особенности. Эти ферменты

· катализируют необратимые реакции;

· обладают наименьшей активностью по сравнению с другими энзимами, принимающими участие в процессе;

· представляют собой аллостерические ферменты.

Ключевыми ферментами цикла Кребса являются цитратсинтаза и изоцитратдегидрогеназа. Подобно ключевым ферментам других метаболических путей их активность регулируется по принципу отрицательной обратной связи: она снижается при повышении концентрации промежуточных продуктов цикла Кребса в митохондриях. Так, в качестве ингибиторов цитратсинтазы выступают лимонная кислота и сукцинил-коэнзим А, а в качестве изоцитратдегидрогеназы – восстановленный НАД.

АДФ является активатором изоцитратдегидрогеназы. В условиях повышения потребности клетки в АТФ как источника энергии, когда в ней увеличивается содержание продуктов распада (АДФ), возникают предпосылки для повышения скорости окислительно-восстановительных превращений в цикле Кребса и, следовательно, возрастания уровня ее энергетического обеспечения.

Цикл трикарбоновых кислот (ЦТК, цикл Кребса, цикл лимонной кислоты) является наиболее важным поставщиком в дыхательную цепь восстановленных форм коферментов и простетических групп, образующихся при утилизации ацетил-КоА (1), кетокислот, продуктов окисления моносахаридов, высших жирных кислот (ВЖК) и аминокислот (см. рис. 28).

Все ферменты процесса локализованы в матриксе митохондрий, за исключением сукцинатдегидрогеназы (6*, рис.28). Скорость течения ЦТК зависит в первую очередь, от скорости образования в матриксе митохондрий ацетил-КоА (рис.28, (1)), поступления его предшественников (пиру­вата, ВЖК) и ряда других факторов, которые необходимо рассмотреть применительно к каждой из восьми реакций цикла Кребса:

1) Конденсация ацетил-КоА (1) с оксалоацетатом (щавелевоуксусной кислотой (ЩУК), 2) осуществляет фермент цитратсинтаза (1*). Активность цитратсинтазы ингибируется накоплением в матриксе АТФ, НАДН, сукцинил-КоА и ацилов ВЖК;

2) Изомеризация цитрата (3) в изоцитрат (5) осуществляет фермент аконитаза (Fe 2+ -содержащий белок, 2*) в два этапа:

1 этап - дегидратация цитрата с образованием цис-аконитовой кислоты (4);

2 этап – гидратация цис-аконитовой кислоты по двойной связи с образованием изоцитрата (5).

Фермент ингибируется производными мышьяковой кислоты.

Рис 28. Цикл Кребса. В схеме процесса все ферменты помечены цифрой со звездочкой, метаболиты помечены цифрой в круглых скобках (см. названия по тексту).

3) При действии НАД + - зависимой изоцитратдегидрогеназы (3*) происходит окисли­тельное декарбоксилирование изоцитрата (5) с образованием продуктов:
ά-кетоглутарата (7), СО 2 и НАДН (донор электронов в дыхательную цепь). Реакция протекает в два этапа: 1) дегидрирование с образованием щавелево-янтарной кислоты (6); 2) декарбоксилирование данного вещества до ά-кетоглутаровой кислоты. Изоцитрат­дегидрогеназа лимитирует скорость всего цикла Кребса. Фермент активируется АДФ, ионами Mg 2+ и Mn 2+ ; ингибируется накоплением в матриксе АТФ, НАДН;

4) Окислительное декарбоксилирование ά-кетоглутарата осуществляет ά-кетоглутаратдегидрогеназный комплекс (4*). Это полиферментная система по составу (три фермента) и витаминной обеспеченности: витамины В 1 (кофермент ТДФ), В 2 (простетическая группа ФАД), В 5 (кофермент КоАSH), В 3 (кофермент НАД +), амид липоевой кислоты). В результате работы комплекса образуется СО 2 , сукцинил-КоА (макроэргическое вещество, 8); НАДН (донор электронов в дыхательную цепь);

5) Сукцинил-КоА-тиокиназа (синтаза, 5*), используя энергию разрыва макроэргической связи в сукцинил-КоА, фосфорилирует ГДФ с образованием ГТФ, при этом параллельно происходит образование янтарной кислоты (по аниону - сукцинат, 9). Данная реакция носит название субстратного фосфорилирования. Образованный ГТФ может далее при действии нуклеозиддифосфаткиназы превращаться в АТФ по уравнению:

ГТФ + АДФ → АТФ + ГДФ

6) Сукцинатдегидрогеназа (единственный фермент ЦТК, локализованный на внутренней мембране митохондрий, 6*), благодаря простетической группе ФАД окисляет янтарную кислоту (9) до транс-фумаровой кислоты (10). Сукцинатдегидрогеназа во внутренней мембране митохондрий образует комплекс с железосеросодержащими белками, который носит название комплекса II дыхательной цепи. Малоновая кислота является конкурентным ингибитором фермента;

7) Фермент фумараза (7*) гидратирует по двойной связи только транс-форму фумаровой кислоты с образованием L-яблочной кислоты (по аниону- L-малат, 11). Реакция обратима, фумараза стереоспецифична только к L-малату.

8) На последней стадии цикла НАД + – зависимая малатдегидрогеназа (8*) катали­зирует окисление L-малата в щавелевоуксусную кислоту (ЩУК) с образо­ванием НАДН (донор электронов в дыхательную цепь). Реакция обратима, однако быстрое использование ЩУК в цитратсинтазной реакции сдвигает равновесие вправо.

Таким образом, за восемь реакций цикла Кребса, через образование трех трикарбоновых кислот (лимонной, цис-аконитовой, изолимонной), в ходе четырех дегидрогеназных реакций, две из которых сопровождались декарбоксилированием (3*, 4*), происходит образование 2 молей СО 2 , 3 НАДН, 1 ФАДН 2 и 1 ГТФ равноценного 1 АТФ. Данные вещества называют конечными продуктами цикла Кребса в расчете на один цикл. ЩУК постоянно регенерирует и вновь включается в цитратсинтазную реакцию, поэтому данное вещество конечным продуктом цикла можно не называть.

Основными регуляторными реакциями ЦТК являются цитратсинтазная и изоцитратдегидрогеназная. В регуляции ЦТК имеет место принцип обратной метаболической связи. Интенсивность окисления в нём субстратов увеличивается в условиях повышения концентрации АДФ и НАД + . В условиях увеличения концентрации АТФ и НАДН скорость окисления субстратов в цикле Кребса снижается. Подобная регуляция позволяет адекватно менять интенсивность функционирования ЦТК в условиях, требующих срочного изменения уровня энергообеспечения клетки.

Интенсивность течения ЦТК можно определять по значению дыхательного контроля, который выражается отношением концентраций [АТФ]/[АДФ]. При значениях [АТФ]/[АДФ]<1 увеличивается скорость включения в дыхательную цепь восстановленных форм коферментов НАДН, при этом скорость ЦТК увеличивается.

Цикл Кребса является амфиболическим процессом , так как, хотя это и катаболический процесс, некоторые его метаболиты могут быть использованы клеткой в синтетических целях. Сукцинил-КоА используется клеткой в качестве исходного субстрата для первой реакции синтеза гема. Оксалоацетат и его предшественники по циклу могут быть использованы в синтезе глюкозы (процесс глюконеогенеза). Кетокислоты – оксалоацетат и альфа-кетоглутарат, благодаря реакциям трансаминирования, могут быть использованы для образования заменимых аминокислот: аспарагиновой, глутаминовой кислот соответственно.