Понятие статистической оценки характеристик свойств. Статистическое оценивание. Генеральная и выборочная средние

является смещенной О. с. для дисперсии , так как ; в качестве несмещенной О. с. для s 2 обычно берут функцию


См. также Несмещенная оценка.

За меру точности несмещенной О. с. а для параметра ачаще всего принимают дисперсию Da.

О. с. с наименьшей дисперсией наз. наилучшей. В приведенном примере среднее арифметическое (1) - наилучшая О. с. Однако если случайных величин X i отлично от нормального, то О. с. (1) может и не быть наилучшей. Напр., если результаты наблюдений Х i распределены равномерно в интервале (b, с ), то наилучшей О. с. для математич. ожидания а= (b+с )/2 будет полусумма крайних значений

(3)

В качестве характеристики для сравнения точности различных О. с. применяют эффективность - дисперсий наилучшей оценки и данной несмещенной оценки. Напр., если результаты наблюдений Х i распределены равномерно, то дисперсии оценок (1) и (3) выражаются формулами

и (4)

Так как оценка (3) наилучшая, то эффективность оценки (1) в данном случае есть

При большом количестве наблюдений побычно требуют, чтобы выбранная О. с. стремилась по вероятности к истинному значению параметра а, т. е. чтобы для всякого e > 0

такие О. с. наз. состоятельными (пример состоятельной О. с,- любая , дисперсия к-рой при стремится к нулю; см. также Состоятельная оценка ). Поскольку важную роль при этом играет стремления к пределу, то асимптотически наилучшими являются асимптотически эффективные О. с., то есть такие О. с., для к-рых при

Напр., если распределены одинаково нормально, то О. с. (2) представляет собой асимптотически эффективную оценку для неизвестного параметра , так как при дисперсия оценки и дисперсия наилучшей оценки асимптотически эквивалентны:

и, кроме того,

Фундаментальное значение для теории О. с. и ее приложений имеет тот факт, что О. с. для параметра аограничено снизу нек-рой величиной (этой величиной Р. Фишер (R. Fischer) предложил характеризовать количество информации относительно неизвестного параметра a, содержащийся в результатах наблюдений). Напр., если независимы и одинаково распределены с плотностью вероятности р(х; а ).и если - О. с. для нек-рой функции g(a).от параметра а, то в широком классе случаев

Функцию b(а) наз. смещением, а величину, обратную правой части неравенства (5), наз. количеством информации (по Фишеру) относительно функции g(a), содержащейся в результате наблюдений. В частности, если а - несмещенная О. с. параметра а, то,

причем количество информации nIa в этом случае пропорционально количеству наблюдений (функцию I(а).наз. количеством информации, содержащейся в одном наблюдении).

Основные условия, при к-рых справедливы неравенства (5) и (6), - гладкость оценки акак функции от X i , а также от параметра амножества тех точек х, где р( х, а )=0. Последнее условие не выполняется, напр., в случае равномерного распределения, и поэтому дисперсия О. с. (3) не удовлетворяет неравенству (6) [согласно (4) эта дисперсия есть порядка n -2 , в то время как по неравенству (6) она не может иметь малости выше, чем п -1 ].

Неравенства (5) и (6) справедливы и для дискретно распределенных случайных величин X i нужно лишь в определении информации I(а). р(х; а ).заменить вероятностью события {Х=х}.

Если дисперсия несмещенной О. с. a* для параметра асовпадает с правой частью неравенства (6), то - наилучшая оценка. Обратное утверждение, вообще говоря, неверно: дисперсия наилучшей О. с. может превышать . Однако если , то дисперсия наилучшей оценки асимптотически эквивалентна правой части (6), т. е. . Таким образом, с помощью количества информации (по Фишеру) можно определить асимптотич. эффективность несмещенной О. с. а, полагая

Особенно плодотворным информационный подход к теории О. с. сказывается тогда, когда плотность (в дискретном случае - ) совместного распределения случайных величин пред-ставима в виде произведения двух функций h(x 1 ,х 2 ,...,х п ).[у( х 1 , х 2 ,..., х n );а], из к-рых первая не зависит от а, а вторая представляет собой плотность распреде-деления нек-рой случайной величины Z=y (X 1 , Х 2 ,.. ., Х п ), наз. достаточной статистикой или исчерпывающей статистикой.

Один из наиболее распространенных методов нахождения точечных О. с.- моментов метод. Согласно этому методу, теоретич. распределению, зависящему от неизвестных параметров, ставят в дискретное выборочное , к-рое определяется результатами наблюдений X i и представляет собой распределение вероятностей воображаемой случайной величины, принимающей значения с одинаковыми вероятностями, равными 1/n (выборочное распределение можно рассматривать как точечную О. с. для теоретич. распределения). В качестве О. с. для моментов теоретич. распределения принимают соответствующие моменты выборочного распределения; напр., для математич. ожидания аи дисперсии s 2 метод моментов дает следующие О. с.: (1) и выборочную дисперсию (2). Неизвестные параметры обычно выражаются (точно или приближенно) в виде функций от нескольких моментов теоретич. распределения. Заменяя в этих функциях теоретич. моменты выборочными, получают искомые О. с. Этот метод, часто приводящий на практике к сравнительно простым вычислениям, дает, как правило, О. с. невысокой асимптотической эффективности (см. выше пример оценки математического ожидания равномерного распределения).

Другой метод нахождения О. с., более совершенный с теоретич. точки зрения,- максимального правдоподобия метод, или наибольшего правдоподобия метод. Согласно этому методу, рассматривают функцию правдоподобия L(а), к-рая представляет собой функцию неизвестного параметра аи получается в результате замены в плотности совместного распределения аргументов x i самими случайными величинами X i ; если X i - независимы и одинаково распределены с плотностью вероятности р(x; а ), то

(если X i распределены дискретно, то в определении функции правдоподобия Lследует плотности заменить вероятностями событий ). В качестве О. с. максимального правдоподобия для неизвестного параметра апринимают такую величину a, для к-рой L(a) достигает наибольшего значения (при этом часто вместо Lрассматривают т. н. логарифмическую функцию правдоподобия ; в силу монотонности логарифма точки максимумов функций L(a).и l(a) совпадают). Примерами О. с. максимального правдоподобия являются оценки по наименьших квадратов методу.

Основное достоинство О. с. максимального правдоподобия заключается в том, что при нек-рых общих условиях эти оценки состоятельны, асимптотически эффективны и распределены приближенно нормально.

Перечисленные свойства означают, что если a есть О. с. максимального правдоподобия, то при

(если Xнезависимы, то ). Таким образом, для функции распределения нормированной О. с. имеет место предельное соотношение

Преимущества О. с. максимального правдоподобия оправдывают вычислительную работу по отысканию максимума функции L(или l). В нек-рых случаях вычислительная работа существенно сокращается благодаря следующим свойствам: во-первых, если a* - такая О. с., для к-рой (6) обращается в равенство, то О. с. максимального правдоподобия единственна и совпадает с a*, во-вторых, если существует Z, то О. с. максимального правдоподобия есть функция Z.

Пусть, напр., независимы и распределены одинаково нормально так, что

поэтому

Координаты а= а 0 и s= s 0 точки максимума функции I( а, s).удовлетворяют системе уравнений


Таким образом, и, значит, в данном случае О. с. (1) и (2) - оценки максимального правдоподобия, причем - наилучшая О. с. параметра а, распределенная нормально (, ), а - асимптотически эффективная О. с. параметра s 2 , распределенная при больших пприближенно нормально (). Обе оценки представляют собой независимые достаточные статистики.

Еще один пример, в к-ром

Эта плотность удовлетворительно описывает распределение одной из координат частиц, достигших плоского экрана и вылетевших из точки, расположенной вне экрана (a - координата проекции источника на экран- предполагается неизвестной). Для указанного распределения математич. ожидание не существует, т. к. соответствующий расходится. Поэтому отыскание О. с. для аметодом моментов невозможно. Формальное применение в качестве О. с. среднего арифметического (1) лишено смысла, т. к. распределено в данном случае с той же плотностью р(х; a), что и каждый единичный результат наблюдений. Для оценки аможно воспользоваться тем обстоятельством, что рассматриваемое распределение симметрично относительно точки х=а и, значит, а - медиана теоретич. распределения. Несколько видоизменяя метод моментов, в качестве О. с. для апринимают т. н. выборочную медиану m, к-рая при является несмещенной О. с. для a, причем если пвелико, то m распределена приближенно нормально с дисперсией


В то же время

поэтому и, значит, согласно (7) асимптотич. эффективность равна . Таким образом, для того чтобы m была столь же точной О. с. для a, как и оценка наибольшего правдоподобия a, нужно количество наблюдений увеличить на 25%. Если затраты на эксперимент велики, то для определения аследует воспользоваться О. с. а, к-рая в данном случае определяется как уравнения

В качестве первого приближения выбирают a 0 =u и далее решают это последовательными приближениями по формуле

См. также Точечная оценка.

Интервальные оценки. Интервальной оценкой наз. такая О. с., к-рая геометрически представима в виде множества точек, принадлежащих пространству параметров. Интервальную О. с. можно рассматривать как точечных О. с. Это множество зависит от результатов наблюдений и, следовательно, оно случайно; поэтому каждой интервальной О. с. ставится в соответствие вероятность, в к-рой эта оценка "накроет" неизвестную параметрич. точку. Такая вероятность, вообще говоря, зависит от неизвестных параметров; поэтому в качестве характеристики достоверности интервальной О. с. принимают доверия - наименьшее возможное значение указанной вероятности. Содержательные стати-стич. выводы позволяют получать лишь те интервальные О. с., коэффициент доверия к-рых близок к единице.

Если оценивается один параметр a, то интервальной О. с. обычно является нек-рый (b, g).(т. н. ), конечные точки к-рого (b и g представляют собой функции от результатов наблюдений; коэффициент доверия со в данном случае определяется как вероятности одновременного осуществления двух событий {b < a} и (g > a}, вычисляемая по всем возможным значениям параметра a:


Если середину такого интервала принять за точечную О. с. для параметра a, то с вероятностью не менее чем со можно утверждать, что этой О. с. не превышает половины длины интервала . Иными словами, если руководствоваться указанным правилом оценки абсолютной погрешности, то ошибочное заключение будет получаться в среднем менее чем в случаев. При фиксированном коэффициенте доверия со наиболее выгодны кратчайшие доверительные интервалы, для к-рых математич. ожидание длины достигает наименьшего значения.

Если распределение случайных величин X i зависит только от одного неизвестного параметра а, то построение доверительного интервала обычно осуществляется с помощью какой-либо точечной О. с. а. Для большинства практически интересных случаев функция распределения разумно выбранной О. с. а монотонно зависит от параметра а. В этих условиях для отыскания интервальной О. с. следует в F(х; а )подставить х= a. и определить корни а 1 = a 1 (a, w) и а 2 =a 2 (a, w) уравнений

(9) где

[для непрерывных распределений ]. Точки с координатами и ограничивают доверительный интервал с коэффициентом доверия w. Разумеется, интервал, построенный столь простым способом, во многих случаях может отличаться от оптимального (кратчайшего). Однако если a - асимптотически эффективная О. с. для a, то при достаточно большом количестве наблюдений такая интервальная О. с. практически несущественно отличается от оптимальной. В частности, это верно для О. с. наибольшего правдоподобия, т. к. она распределена асимптотически нормально (см. (8)). В тех случаях, когда уравнений (9) затруднительно, интервальную О. с. вычисляют приближенно с помощью точечной О. с. максимального правдоподобия и соотношения (8):

где х - корень уравнения

Если , то истинный коэффициент доверия интервальной оценки стремится к w. В более общем случае распределение результатов наблюдений X i - зависит от нескольких параметров а, b,... . В этих условиях указанные выше правила построения доверительных интервалов часто оказываются неприменимыми, т. к. распределение точечной О. с. a, зависит, как правило, не только от a, но и от остальных параметров. Однако в практически интересных случаях О. с. a можно заменить такой функцией от результатов наблюдений X i и неизвестного параметра я, распределение к-рой не зависит (или "почти не зависит") от всех неизвестных параметров. Примером такой функции может служить нормированная О. с. максимального правдоподобия ; если в знаменателе аргументы a, b,... заменить их оценками максимального правдоподобия a, b,. . . , то предельное распределение останется тем же самым, что и в формуле (8). Поэтому приближенные доверительные интервалы для каждого параметра в отдельности можно строить так же, как и в случае одного параметра.

Как уже отмечалось выше, если ,... - независимые и одинаково нормально распределенные случайные величины, то и s 2 - наилучшие О. с. для параметров a и s 2 соответственно. Функция распределения О. с. выражается формулой


и, следовательно, она зависит не только от a, но также и от s. В то же время распределение т. н. отношения Стьюдента


не зависит ни от a, ни от s, причем

где постоянная выбирается так, чтобы выполнялось равенство . Таким образом, доверительному интервалу

соответствует коэффициент доверия

Распределение оценки s 2 зависит лишь от s 2 , причем функция распределения О. с. s 2 аадается формулой

где постоянная D n-1 определяется условием (так наз. -распределением с п-1степенями свободы).

Так как с ростом s вероятность монотонно возрастает, то для построения интервальной О. с. применимо правило (9). Таким образом, если х 1 и x 2 - корни уравнений и = , то доверительному интервалу

соответствует коэффициент доверия w. Отсюда, в частности, следует, что доверительный интервал для относительной ошибки задается неравенствами

Подробные таблицы функций распределения Стьюдента и -распределения имеются в большинстве руководств по математич. статистике.

До сих пор предполагалось, что функция распределения результатов наблюдений известна с точностью до значений нескольких параметров. Однако в приложениях часто встречается случай, когда функции распределения неизвестен. В этой обстановке для оценки параметров могут оказаться полезными т. н. непараметрические методы статистики (т. е. такие методы, к-рые не зависят от исходного распределения вероятностей). Пусть, напр., требуется оценить медиану ттеоретич. непрерывного распределения независимых случайных величин X 1 , Х 2 ,..., Х п (для симметричных распределений совпадает с математич. ожиданием, если, конечно, оно существует). Пусть Y 1 - те же величины X i но расположенные в порядке возрастания. Тогда, если k - целое число, удовлетворяющее неравенствам n/2 , то

Таким образом, - интервальная О. с. для тс коэффициентом доверия w=w n,k . Этот верен при любом непрерывном распределении случайных величин X i .

Выше отмечалось, что выборочное распределение - точечная О. с. для неизвестного теоретич. распределения. Более того, функция Выборочного распределения F n (x).- несмещенная О. с. для функции теоретич. распределения F(x). При этом, как показал А. Н. Колмогоров, распределение статистики

не зависит от неизвестного теоретич. распределения и при стремится к предельному распределению К(у), к-рое наз. распределением Колмогорова. Таким образом, если у - решение уравнения К(y)=w, то с вероятностью w можно утверждать, что функции теоретич. распределения F(у).целиком "покрывается" полосой, заключенной между графиками функций (при различие допредельного и предельного распределений статистики l n практически несущественно). Такую интервальную О. с. наз. доверительной зоной. См. также Интервальная оценка.

Статистические оценки в теории ошибок. Теория ошибок - раздел математич: статистики, посвященный численному определению неизвестных величин по результатам измерений. В силу случайного характера ошибок измерений и, быть может, случайной природы самого изучаемого явления не все такие результаты равноправны: при повторных измерениях нек-рые из них встречаются чаще, другие - реже.

В основе теории ошибок лежит математич. , согласно к-рой до опыта совокупность всех мыслимых результатов измерения трактуется как множество значений нек-рой случайной величины. Поэтому важную роль приобретает О. с. Выводы теории ошибок носят статистич. . Смысл и содержание таких выводов (как, впрочем, и выводов теории О.

Полагая результат измерения Xслучайной величиной, различают три основных типа ошибок измерений: систематические, случайные и грубые (качественные описания таких ошибок даны в ст. Ошибок теория ). При этом ошибкой измерения неизвестной величины аназ. X-а, математич. ожидание этой разности E( Х-а )=b наз. систематической ошибкой (если b=0, то говорят, что измерения лишены систематич. ошибок), а разность d=Х- а-b наз. случайной ошибкой . Таким образом, если приведено пнезависимых измерений величины a, то их результаты можно записать в виде равенств

где аи b- постоянные, a d i - случайные величины. В более общем случае

где b i - не зависящие от d i случайные величины, к-рые равны нулю с вероятностью, весьма близкой к единице (поэтому всякое другое значение маловероятно). Величину b i наз. грубой ошибкой.

Задача оценки (и устранения) систематич. ошибки обычно выходит за рамки математич. статистики. Исключения составляют т. н. метод эталонов, согласно к-рому для оценки bпроизводят серию измерений известной величины а(в этом методе b - оцениваемая величина и а - известная систематич. ошибка), а также , позволяющий оценивать систематич. расхождения между несколькими сериями измерений.

Основная задача теории ошибок - отыскивание О. с. для неизвестной величины аи оценка точности измерений. Если систематич. ошибка устранена (b=0) и наблюдения грубых ошибок не содержат, то согласно (10) Х i =a+d i и, значит, в этом случае задача оценки асводится к отысканию в том или ином смысле оптимальной О. с. для математич. ожидания одинаково распределенных случайных величин X i . Как было показано в предыдущих разделах, вид такой О. с. (точечной или интервальной) существенно зависит от закона распределения случайных ошибок. Если этот закон известен с точностью до нескольких неизвестных параметров, то для оценки, а также для оценки аможно применять, напр., метод максимального правдоподобия; в противном случае следует сначала по результатам наблюдений Х i найти О. с. для неизвестной функции распределения случайных ошибок d i ("непараметрическая" интервальная О. с. такой функции указана выше). В практич. работе часто довольствуются двумя О. с. и (см. (1) и (2)). Если d i распределены одинаково нормально, то эти О. с. наилучшие; в других случаях эти оценки могут оказаться малоэффективными.

Наличие грубых ошибок усложняет задачу оценки параметра а. Обычно доля наблюдений, в к-рых бывает невелика, а математич. ожидание ненулевых |b i | значительно превышает (грубые ошибки возникают в результате случайного просчета, неправильного чтения показаний измерительного прибора и т. п.). Результаты измерений, содержащие грубые ошибки, часто бывают хорошо заметны, т. к. они сильно отличаются от других результатов измерений. В этих условиях наиболее целесообразный способ выявления (и устранения) грубых ошибок - непосредственный анализ измерений, тщательная проверка неизменности условий всех экспериментов, запись результатов "в две руки" и т. д. Статистич. методы выявления грубых ошибок следует применять лишь в сомнительных случаях.

Простейший пример таких методов - статистпч. выявление одного резко выделяющегося наблюдения, когда подозрительным может оказаться либо Y 1 =minX 1 , либо Y п =mахХ i (предполагается, что в равенствах (11) b=0 и закон распределения величин d i известен). Для того чтобы выяснить, обосновано ли предположение о наличии одной грубой ошибки, для пары Y 1 , Y n вычисляют совместную интервальную О. с. (доверительную ), полагая все b i равными нулю. Если эта О. с. "накрывает" точку с координатами (Y 1 , Y n ), то подозрение о наличии грубой ошибки следует считать статистически необоснованным; в противном случае гипотезу о присутствии грубой ошибки надо признать подтвердившейся (при этом обычно забракованное наблюдение отбрасывают, т. к. сколько-нибудь надежно оценить величину грубой ошибки по одному наблюдению статистически не представляется возможным).

Распределения в математической статистике характеризуется многими статистическими параметрами. Оценка неизвестных параметров распределения на основе различных данных выборки позволяет построить распределения случайной величины.

Найти статистическую оценку неизвестного параметра распределения -- найти функцию от наблюдаемых случайных величин, которая даст приближенное значение оцениваемого параметра.

Статистические оценки можно разделить на несмещенные, смещенные, эффективные и состоятельные.

Определение 1

Несмещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, равное оцениваемому параметру, то есть

Определение 2

Смещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, не равное оцениваемому параметру, то есть

Определение 4

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, стремится по вероятности к оцениваемому параметру $Q.$

Определение 5

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, дисперсия несмещенной оценки стремится к нулю.

Генеральная и выборочная средние

Определение 6

Генеральная средняя -- среднее арифметическое значений вариант генеральной совокупности.

Определение 7

Выборочная средняя -- среднее арифметическое значений вариант выборочной совокупности.

Величины генерального и выборочного среднего можно найти по следующим формулам:

  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ имеют, соответственно, частоты $n_1,\ n_2,\dots ,n_k$, то
  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ различны, то

С этим понятием связано такое понятие как отклонение от средней. Данная величина находится по следующей формуле:

Среднее отклонение обладает следующими свойствами:

    $\sum{n_i\left(x_i-\overline{x}\right)=0}$

    Среднее значение отклонения равно нулю.

Генеральная, выборочная и исправленная дисперсии

Еще одними из основных параметров является понятие генеральной и выборочной дисперсии:

Генеральная дисперсия:

Выборочная дисперсия:

С этими понятия связаны также генеральная и выборочная средние квадратические отклонения:

В качестве оценки генеральной дисперсии вводится понятие исправленной дисперсии:

Также вводится понятие исправленного стандартного отклонения:

Пример решения задачи

Пример 1

Генеральная совокупность задана следующей таблицей распределения:

Рисунок 1.

Найдем для нее генеральное среднее, генеральную дисперсию, генеральное среднее квадратическое отклонение, исправленную дисперсию и исправленное среднее квадратическое отклонение.

Для решения этой задачи для начала сделаем расчетную таблицу:

Рисунок 2.

Величина $\overline{x_в}$ (среднее выборочное) находится по формуле:

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}\]

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}=\frac{87}{30}=2,9\]

Найдем генеральную дисперсию по формуле:

Генеральное среднее квадратическое отклонение:

\[{\sigma }_в=\sqrt{D_в}\approx 1,42\]

Исправленная дисперсия:

\[{S^2=\frac{n}{n-1}D}_в=\frac{30}{29}\cdot 2,023\approx 2,09\]

Исправленное среднее квадратическое отклонение.

статистическая оценка распределение выборка

Оценка - это приближение значений искомой величины, полученное на основании результатов выборочного наблюдения. Оценки являются случайными величинами. Они обеспечивают возможность формирования обоснованного суждения о неизвестных параметрах генеральной совокупности. Примером оценки генеральной средней является выборочная средняя генеральной дисперсии - выборочная дисперсия и т.д.

Для того чтобы оценить насколько «хорошо» оценка отвечает соответствующей генеральной характеристике разработаны 4 критерия: состоятельность, несмещенность, эффективность и достаточность. Этот подход основывается на том, что качество оценки определяется не по ее отдельным значениям, а по характеристикам ее распределения как случайной величины.

Основываясь на положениях теории вероятностей, можно доказать, что из таких выборочных характеристик, как средняя арифметическая, мода и медиана, только средняя арифметическая представляет собой состоятельную, несмещенную, эффективную и достаточную оценку генеральной средней. Этим и обуславливается предпочтение, отдаваемое средней арифметической в ряду остальных выборочных характеристик.

Несмещенность оценки проявляется в том, что ее математическое ожидание при любом объеме выборки равно значению оцениваемого параметра в генеральной совокупности. Если это требование не выполняется, то оценка является смещенной .

Условие несмещенности оценки направлено на устранение систематических ошибок оценивания.

При решении задач оценивания применяют также асимптотически несмещенные оценки , для которых при увеличении объема выборки математическое ожидание стремится к оцениваемому параметру генеральной совокупности.

Состоятельность статистических оценок проявляется в том, что с увеличением объема выборки оценка все больше и больше приближается к истинному значению оцениваемого параметра или, как говорят, оценка сходится по вероятности к искомому параметру, или стремится к своему математическому ожиданию. Лишь состоятельные оценки имеют практическую значимость.

Это такая оценка несмещенного параметра, которая обладает наименьшей дисперсией при данном объеме выборки. На практике дисперсия оценки обычно отождествляется с ошибкой оценки.

В качестве меры эффективности оценки принимают отношение минимально возможной дисперсии к дисперсии другой оценки.

Оценка, обеспечивающая полноту использования всей содержащейся в выборке информации о неизвестной характеристике генеральной совокупности, называется достаточной (исчерпывающей).

Соблюдение рассмотренных выше свойств статистических оценок дает возможность считать выборочные характеристики для оценки параметров генеральной совокупности лучшими из возможных.

Важнейшая задача математической статистики состоит в том, чтобы по выборочным данным получить наиболее рациональные, «правдивые» статистические оценки искомых параметров генеральной совокупности. Различают два вида статистических выводов: статистическая оценка; проверка статистических гипотез.

Основная задача получения статистических оценок заключается в выборе и обосновании наилучших оценок, обеспечивающих возможность содержательной оценки неизвестных параметров генеральной совокупности.

Задача оценки неизвестных параметров может быть решена двумя способами:

  • 1. неизвестный параметр характеризуется одним числом (точкой) - используется метод точечной оценки;
  • 2. интервальная оценка, то есть определяется интервал, в котором с некоторой вероятностью может находиться искомый параметр.

Точечная оценка неизвестного параметра заключается в том, что конкретное числовое значение выборочной оценки принимается за наилучшее приближение к истинному параметру генеральной совокупности, то есть неизвестный параметр генеральной совокупности оценивается одним числом (точкой), определенным по выборке. При таком подходе всегда существует риск совершить ошибку, поэтому точечная оценка должна дополняться показателем возможной ошибки при определенном уровне вероятности.

В качестве средней ошибки оценки принимается ее среднее квадратическое отклонение.

Тогда точечная оценка генеральной средней может быть представлена в виде интервала

где - выборочная средняя арифметическая.

При точечной оценке применяют несколько методов получения оценок по выборочным данным:

  • 1. метод моментов, при котором моменты генеральной совокупности заменяются моментами выборочной совокупности;
  • 2. метод наименьших квадратов;
  • 3. метод максимального правдоподобия.

Во многих задачах требуется найти не только числовую оценку параметра генеральной совокупности, но и оценить ее точность и надежность. Особенно это важно для выборок относительно малого объема. Обобщением точечной оценки статистического параметра является его интервальная оценка - нахождение числового интервала, содержащего с определенной вероятностью оцениваемый параметр.

В связи с тем, что при определении генеральных характеристик по выборочным данным всегда присутствует некоторая ошибка, практичнее определить интервал с центром в найденной точечной оценке, внутри которого с некоторой заданной вероятностью находится истинное искомое значение оцениваемого параметра генеральной характеристики. Такой интервал называют доверительным.

Доверительный интервал - это числовой интервал, который с заданной вероятностью г накрывает оцениваемый параметр генеральной совокупности. Такую вероятность называют доверительной. Доверительная вероятность г - это вероятность, которую можно признать достаточной в рамках решаемой задачи для суждения о достоверности характеристик, полученных на основе выборочных наблюдений. Величину

вероятности допустить ошибку называют уровнем значимости .

Для выборочной (точечной) оценки И * (тета) параметра И генеральной совокупности с точностью (предельной ошибкой ) Д и доверительной вероятностью г доверительный интервал определяется равенством:

Доверительная вероятность г дает возможность установить доверительные границы случайного колебания изучаемого параметра И для данной выборки.

В качестве доверительной вероятности принимают зачастую следующие значения и соответствующие им уровни значимости

Таблица 1. - Наиболее употребительные доверительные вероятности и уровни значимости

Например, 5-процентный уровень значимости означает следующее: в 5-ти случаях из 100 существует риск совершить ошибку при выявлении характеристик генеральной совокупности по выборочным данным. Или, другими словами, в 95 случаях из 100 генеральная характеристика, выявленная на основе выборки будет лежать в пределах доверительного интервала.

Статистические оценки параметров генеральной совокупности. Статистические гипотезы

ЛЕКЦИЯ 16

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Отсюда возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что изучаемый признак распределён в генеральной совокупности по нормальному закону, то необходимо оценить (приближённо найти) математическое ожидание и среднеквадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение. Если же имеются основания считать, что признак имеет распределение Пуассона, то необходимо оценить параметр , которым это распределение определяется.

Обычно в распределении исследователь имеет лишь данные выборки, например, значения количественного признака , полученные в результате наблюдений (здесь и далее наблюдения предполагаются независимыми). Через эти данные и выражают оцениваемый параметр.

Рассматривая как значения независимых случайных величин , можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения означает найти функцию от наблюдаемых случайных величин, которая и даёт приближённое значение оцениваемого параметра. Например, как будет показано далее, для оценки математического ожидания нормального распределения служит функция (среднее арифметическое наблюдаемых значений признака):

.

Итак, статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин. Статистическая оценка неизвестного параметра генеральной совокупности, записанная одним числом, называется точечной . Рассмотрим следующие точечные оценки: смещенные и несмещённые, эффективные и состоятельные.

Для того, чтобы статистические оценки давали «хорошие» приближения оцениваемых параметров, они должны удовлетворять определённым требованиям. Укажем эти требования.

Пусть есть статистическая оценка неизвестного параметра теоретического распределения. Допустим, что при выборке объёма найдена оценка . Повторим опыт, то есть извлечём из генеральной совокупности другую выборку того же объёма и по её данным найдём оценку и т.д. Повторяя опыт многократно, получим числа , которые, вообще говоря, будут различаться между собой. Таким образом, оценку можно рассматривать как случайную величину, а числа – как возможные её значения.

Ясно, что если оценка даёт приближённое значение с избытком, то каждое найденное по данным выборок число будет больше истинного значения . Следовательно, что в этом случае и математическое (среднее значение) случайной величины будет больше, чем , то есть . Очевидно, что если даёт приближённое значение с недостатком, то .


Поэтому, использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим (одного знака) ошибкам. По этой причине естественно потребовать, чтобы математическое ожидание оценки было равно оцениваемому параметру. Хотя соблюдение этого требования, в общем, не устранит ошибок (одни значения больше, а другие меньше чем ), ошибки разных знаков будут встречаться одинакова часто. Однако соблюдение требования гарантирует невозможность получения систематических ошибок, то есть устраняет систематические ошибки.

Несмещённой называют статистическую оценку (ошибку) , математическое ожидание которой равно оцениваемому параметру при любом объёме выборки, то есть .

Смещённой называют статистическую оценку , математическое ожидание которой не равно оцениваемому параметру при любом объёме выборки, то есть .

Однако было бы ошибочным считать, что несмещённая оценка всегда даёт хорошее приближение оцениваемого параметра. Действительно, возможные значения могут быть сильно рассеяны вокруг своего среднего значения, то есть дисперсия может быть значительной. В этом случае, найденная по данным одной выборки оценка, например , может оказаться весьма удалённой от среднего значения , а значит, и от самого оцениваемого параметра . Таким образом, приняв в качестве приближённого значения , мы допустим большую ошибку. Если же потребовать, чтобы дисперсия была малой, то возможность допустить большую ошибку будет исключена. По этой причине к статистической оценке предъявляется требование эффективности.

Эффективной называют статистическую оценку, которая (при заданном объёме выборки ) имеет наименьшую возможную дисперсию.

Состоятельной называют статистическую оценку, которая при стремится по вероятности к оцениваемому параметру, то есть, справедливо равенство:

.

Например, если дисперсия несмещённой оценки при стремится к нулю, то такая оценка оказывается также состоятельной.

Рассмотрим вопрос о том, какие выборочные характеристики лучше всего в смысле несмещённости, эффективности и состоятельности оценивают генеральную среднюю и дисперсию.

Пусть изучается дискретная генеральная совокупность относительно некоторого количественного признака .

Генеральной средней называется среднее арифметическое значений признака генеральной совокупности. Она вычисляется по формуле:

§ – если все значения признака генеральной совокупности объёма различны;

§ – если значения признака генеральной совокупности имеют соответственно частоты , причём . То есть генеральная средняя есть средняя взвешенная значений признака с весами, равными соответствующим частотам.

Замечание : пусть генеральная совокупность объёма содержит объекты с различными значениями признака . Представим себе, что из этой совокупности наудачу извлекается один объект. Вероятность того, что будет извлечён объект со значением признака, например , очевидно, равна . С этой же вероятностью может быть извлечён и любой другой объект. Таким образом, величину признака можно рассматривать как случайную величину, возможные значения которой имеют одинаковые вероятности, равные . Нетрудно, в этом случае, найти математическое ожидание :

Итак, если рассматривать обследуемый признак генеральной совокупности как случайную величину, то математическое ожидание признака равно генеральной средней этого признака: . Этот вывод мы получили, считая, что все объекты генеральной совокупности имеют различные значения признака. Такой же итог будет получен, если допустить, что генеральная совокупность содержит по несколько объектов с одинаковым значением признака.

Обобщая полученный результат на генеральную совокупность с непрерывным распределением признака , определим генеральную среднюю как математическое ожидание признака: .

Пусть для изучения генеральной совокупности относительно количественного признака извлечена выборка объёма .

Выборочной средней называют среднее арифметическое значений признака выборочной совокупности. Она вычисляется по формуле:

§ – если все значения признака выборочной совокупности объёма различны;

§ – если значения признака выборочной совокупности имеют соответственно частоты , причём . То есть выборочная средняя есть средняя взвешенная значений признака с весами, равными соответствующим частотам.

Замечание : выборочная средняя, найденная по данным одной выборки есть, очевидно, определённое число. Если же извлекать другие выборки того же объёма из той же генеральной совокупности, то выборочная средняя будет изменяться от выборки к выборке. Таким образом, выборочную среднюю можно рассматривать как случайную величину, а следовательно, можно говорить о распределениях (теоретическом и эмпирическом) выборочной средней и о числовых характеристиках этого распределения, в частности, о математическом ожидании и дисперсии выборочного распределения.

Далее, если генеральная средняя неизвестна и требуется оценить её по данным выборки, то в качестве оценки генеральной средней принимают выборочную среднюю, которая является несмещённой и состоятельной оценкой (предлагаем это утверждение доказать самостоятельно). Из сказанного следует, что если по нескольким выборкам достаточно большого объёма из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближённо равны между собой. В этом состоит свойство устойчивости выборочных средних .

Отметим, что если дисперсии двух совокупностей одинаковы, то близость выборочных средних к генеральным не зависит от отношения объёма выборки к объёму генеральной совокупности. Она зависит от объёма выборки: чем объём выборки больше, тем меньше выборочная средняя отличается от генеральной. Например, если из одной совокупности отобран 1% объектов, а из другой совокупности отобрано 4% объектов, причём объём первой выборки оказался большим, чем второй, то первая выборочная средняя будет меньше отличаться от соответствующей генеральной средней, чем вторая.