К фенольным соединениям относится. Классификация фенольных соединений. Классификация простых фенольных соединений

16. Понятие о простых фенольных соединениях (гликозидах), их классификация. Физические и химические свойства. Особенности заготовки, сушки, хранения сырья. Оценка качества сырья, методы анализа. Пути использования сырья, медицинское применение.

Фенольные соединения

Природные фенольные соединения - вещества растительного происхождения, содержащие одно или несколько ароматических колец с одной или несколькими свободными или связанными гидроксильными группами.

Фенольные соединения имеют универсальное распространение в растительном мире. Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3 % массы органического вещества растений, а в некоторых случаях — до 10 % и более. Фенольные соединения обнаружены также в грибах, лишайниках, водорослях. Животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать.

В растениях фенольные соединения играют очень важную роль. Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.

1. Исследованиями русского ученого-биохимика В.И. Палладина (1912 г., Санкт-Петербург) установлено и подтверждено современными исследованиями, что фенольные соединения участвуют в процессе клеточного дыхания. Фенольные соединения выступают в качестве акцепторов (переносчиков) водорода на конечных этапах процесса дыхания, а затем вновь окисляются специфическими ферментами оксидазами.

2. Фенольные соединения являются регуляторами роста, развития и репродукции растений. При этом оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.

3. Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышают устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).

Классификация фенольных соединений

В основу классификации природных фенольных соединений положен биогенетический принцип. В соответствии с современными представлениями о биосинтезе и, исходя из структурных особенностей углеродного скелета, можно выделить следующие классы растительных фенолов.

Физические и химические свойства простых фенольных соединений

Физические свойства.

Простые фенольные соединения — это бесцветные, реже слегка окрашенные, кристаллические вещества с определенной температурой плавления, оптически активны. Имеют специфический запах, иногда ароматный (тимол, карвакрол). В растениях чаще встречаются в виде гликозидов, которые хорошо растворимы в воде, спирте, ацетоне; нерастворимы в эфире, хлороформе. Агликоны слабо растворимы в воде, но хорошо растворимы в эфире, бензоле, хлороформе и этилацетате. Простые фенолы имеют характерные спектры поглощения в УФ и видимой областях спектра.

Фенольные кислоты — кристаллические вещества, растворимы в спирте, этилацетате, эфире, водных растворах натрия гидрокарбоната и ацетата.

Госсипол — мелкокристаллический порошок от светло-желтого до темно-желтого цвета с зеленоватым оттенком, практически нерастворим в воде, мало растворим в спирте, хорошо растворим в липидных фазах.

Химические свойства.

Химические свойства простых фенольных соединений обусловлены наличием:

  • ароматического кольца, фенольного гидроксила, карбоксильной группы;
  • гликозидной связи.

Для фенольных соединений характерны химические реакции:

1. Реакция гидролиза (за счет гликозидной связи). Фенольные гликозиды легко гидролизуются под действием кислот, щелочей или ферментов до агликона и сахаров.

2. Реакция окисления. Фенольные гликозиды легко окисляются, особенно в щелочной среде (даже кислородом воздуха), образуя хиноидные соединения.

3. Реакция солеобразования. Фенольные соединения, обладая кислотными свойствами, образуют со щелочами растворимые в воде феноляты.

4. Реакции комплексообразования. Фенольные соединения образуют с ионами металлов (железа, свинца, магния, алюминия, молибдена, меди, никеля) комплексы, окрашенные в различные цвета.

5. Реакция азосочетания с солями диазония. Фенольные соединения с солями диазония образуют азокрасители от оранжевого до вишнево-красного цвета.

6. Реакция образования сложных эфиров (депсидов). Депсиды образуют фенолокислоты (кислоты дигалловая, тригалловая).

Особенности сбора, сушки и хранения сырья, содержащего простые фенольные соединения

Заготовку сырья брусники и толокнянки проводят в два срока — ранней весной до цветения и осенью с начала созревания плодов до появления снежного покрова. Сушка воздушно-теневая или искусственная при температуре не более 50-60 °С в тонком слое. Повторная заготовка на одних и тех же зарослях возможна через 5-6 лет.

Сырье родиолы розовой (золотой корень) заготавливают в фазы конца цветения и плодоношения. Сушат при температуре 50-60 °С. Повторная заготовка на одних и тех же зарослях возможна через 10-15 лет.

Сырье щитовника мужского (RhizomataFilicismaris) собирают осенью, не моют, сушат в тени или в сушилках при температуре не более 40 °С. Повторная заготовка на одних и тех же зарослях возможна через 20 лет.

Сырье хлопчатника — кору корней (CortexradicumGossypii) — заготавливают после сбора урожая хлопка.

Хранят сырье по общему списку в сухом, хорошо проветриваемом помещении. Срок годности — 3 года. Корневища папоротника мужского хранят 1 год.

Оценка качества сырья, содержащего простые фенольные соединения. Методы анализа

Качественный и количественный анализ сырья основан на физических и химических свойствах.

Качественный анализ.

Фенольные соединения извлекают из растительного сырья водой. Водные извлечения очищают от сопутствующих веществ, осаждая их раствором свинца ацетата. С очищенным извлечением выполняют качественные реакции.

Фенологликозиды, имеющие свободный фенольный гидроксил, дают все реакции, характерные для фенолов (с солями железа, алюминия, молибдена и др.).

Специфические реакции (ГФ ХI):

  1. на арбутин (сырье брусники и толокнянки):

а) с кристаллическим железа закисного сульфатом. Реакция основана на получении комплекса, изменяющего окраску от сиреневой до темно-фиолетовой, с дальнейшим образованием темно-фиолетового осадка.

б) с 10 % раствором натрия фосфорномолибденовокислого в кислоте хлористоводородной. Реакция основана на образовании комплексного соединения синего цвета.

  1. на салидрозид (сырье родиолы розовой):

а) реакция азосочетания с диазотированным натрия сульфацилом с образованием азокрасителя вишнево-красного цвета

Хроматографическое исследование:

Используют различные виды хроматографии (бумажная, тонкослойная и др.). При хроматографическом анализе обычно используют системы растворителей:

  • н-бутанол-уксусная кислота-вода (БУВ 4:1:2; 4:1:5);
  • хлороформ-метанол-вода (26:14:3);
  • 15 % кислота уксусная.

Хроматографическое исследование спиртового извлечения из сырья родиолы розовой.

Используется тонкослойная хроматография. Проба основана на разделении в тонком слое силикагеля (пластинки «Силуфол») метанольного извлечения из сырья в системе растворителей хлороформ-метанол-вода (26:14:3) с последующим проявлением хроматограммы диазотированным натрия сульфацилом. Пятно салидрозида с Rf= 0,42 окрашивается в красноватый цвет.

Количественное определение.

Для количественного определения фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

1. Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов должно быть не менее 1,8 %.

2. Титриметрический йодометрический метод используется для определения содержания арбутина в сырье брусники и толокнянки. Метод основан на окислении агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната после получения очищенного водного извлечения и проведения кислотного гидролиза арбутина. Гидролиз проводится кислотой серной концентрированной в присутствии цинковой пыли, чтобы выделившийся свободный водород предотвращал собственное окисление гидрохинона. В качестве индикатора используют раствор крахмала.

3. Спектрофотометрический метод используется для определения содержания салидрозида в сырье родиолы розовой. Метод основан на способности окрашенных азокрасителей поглощать монохроматический свет при длине волны 486 нм. Определяют оптическую плотность окрашенного раствора, полученного по реакции салидрозида с диазотированным натрия сульфацилом, с помощью спектрофотометра. Рассчитывают содержание салидрозида с учетом удельного показателя поглощения ГСО салидрозида Е 1% 1см = 253.

Пути использования сырья, содержащего простые фенольные соединения

Сырье брусники, толокнянки, родиолы розовой отпускают из аптеки без рецепта врача — приказ Министерства здравоохранения и социального развития РФ № 578 от 13.09.2005 — как лекарственные средства. Корневища папоротника мужского, корневища и корни родиолы розовой, кору корней хлопчатника используют как сырье для получения готовых лекарственных средств.

Из лекарственного растительного сырья, содержащего фенологликозиды, получают:

1. Экстемпоральные лекарственные формы:

  • отвары (сырье брусники, толокнянки, родиолы розовой);
  • сборы (сырье брусники, толокнянки, родиолы розовой).

2. Экстракционные (галеновые) препараты:

Экстракты:

  • жидкий экстракт (корневища и корни родиолы розовой);
  • густой эфирный экстракт (корневища папоротника мужского).

3. Новогаленовые препараты:

  • «Родаскон» из сырья родиолы розовой.

4. Препараты индивидуальных веществ:

3 % линимент госсипола и глазные капли — 0,1 % раствор госсипола в 0,07 % растворе натрия тетрабората (кора корней хлопчатника).

Медицинское применение сырья и препаратов, содержащих простые фенольные соединения

1. Антимикробное, противовоспалительное, диуретическое (мочегонное) действие характерно для сырья брусники и толокнянки. Оно обусловлено наличием в сырье арбутина, который под влиянием ферментов желудочно-кишечного тракта расщепляется на гидрохинон и глюкозу. Гидрохинон, выделяясь с мочой, оказывает антимикробное и раздражающее действие на почки, что обусловливает диуретический эффект и противовоспалительное действие. Противовоспалительное действие обусловлено также наличием дубильных веществ.

Применяют лекарственные формы из сырья брусники и толокнянки для лечения воспалительных заболеваний почек, мочевого пузыря (циститы, уретриты, пиелиты) и мочевыводящих путей. Отвары из листьев брусники используют для лечения заболеваний, связанных с нарушением минерального обмена: мочекаменной болезни, ревматизма, подагры, остеохондроза.

Побочное действие : при приеме больших доз возможно обострение воспалительных процессов, тошнота, рвота, понос. В связи с этим, прием лекарственных форм из сырья брусники и толокнянки рекомендуют проводить в комплексе с другими растениями.

2. Противовирусное действие характерно для фенольных соединений коры корней хлопчатника. «Госсипол» применяют при лечении опоясывающего лишая, простого герпеса, псориаза (линимент); при герпетическом кератите (глазные капли).

3. Адаптогенное, стимулирующее итонизирующее действие оказывают препараты корневищ и корней родиолы розовой. Препараты повышают работоспособность при утомлении, выполнении тяжелой физической работы, оказывают активизирующее влияние на кору головного мозга. Фенольные соединения родиолы способны ингибировать перекисное окисление липидов, повышая устойчивость организма к экстремальным нагрузкам, тем самым проявляют адаптогенное действие. Применяют для лечения больных неврозами, гипотонией, вегето-сосудистой дистонией, шизофренией.

Противопоказания : гипертония, лихорадка, возбуждение. Не назначают летом в жаркое время и во второй половине дня.

Противопоказания : нарушения системы кровообращения, заболевания желудочно-кишечного тракта, печени, почек, беременность, не назначают детям в возрасте до двух лет.

ЛЕКАРСТВЕННЫЕ РАСТЕНИЯ И СЫРЬЕ, СОДЕРЖАЩИЕ ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ (общая характеристика).

1. Понятие о фенольных соединениях, распространение в растительном мире.

2. Роль фенольных соединений для жизнедеятельности растений.

3. Классификация фенольных соединений.

4. Биосинтез фенольных соединений.

Понятие о фенольных соединениях, распространение в растительном мире, роль фенольных соединений для жизнедеятельности растений.

Растения способны синтезировать и накапливать огромное количество соединений фенольной природы.

Фенолы – это ароматические соединения, содержащие в своей молекуле бензольное ядро с одной или несколькими гидроксильными группами.

Соединения, содержащие несколько ароматических колец, с одной или несколькими гидроксильными группами называются полифенолами .

Они встречаются в различных частях многих растений – в покровных тканях в плодах, проростках, листьях, цветках и

Придают им окраску и аромат пигменты фенольной природы - антоцианы;

большинство полифенолов –

Активные метаболиты клеточного обмена,

Играют важную роль в различных физиологических процессах, таких как, фотосинтез, дыхание, рост, устойчивость растений к инфекционным болезням, рост и репродукция;

Защищают растения от патогенных микроорганизмов и грибковых заболеваний.

Распространение.

Из фенолокислот часто встречается галловая кислота и значительно реже - салициловая (фиалка трехцветная). Фенолокислоты и их гликозиды содержатся в родиоле розовой.

К группе фенолов с одним ароматическим кольцом относятся простые фенолы, фенолокислоты, фенолоспирты, оксикоричные кислоты .

Фенологликозидами называется группа гликозидов, агликоном которых являются простые фенолы, оказывающие дезинфицирующее действие на дыхательные пути, почки и мочевые пути.

Фенологликозиды в природе распространены довольно широко. Встречаются в семействах ивовых, брусничных, камнеломковых, толстянковых и др., имеются в листьях толокнянки и брусники .

Природные фенолы часто проявляют высокую биологическую активность:

Препараты на основе фенольных соединений широко используются в качестве

Противомикробных, противовоспалительных, кровоостанавливающих, желчегонных, диуретических, гипотензивных, тонизирующих, вяжущих и слабительных средств.

Фенольные соединения имеют универсальное распространение в растительном мире. Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3% массы органического вещества растений, а в некоторых случаях - до 10% и более. Фенольные соединения обнаружены как в низших; грибах, мхах, лишайниках, водорослях , так и в высших споровых (папоротниках, хвощах) и цветковых растениях. У высших растений - в листьях, цветках, плодах, подземных органах.

Синтез фенольных соединений происходит только в растениях, животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать

В растениях фенольные соединения играют важную роль.

1. Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.

Исследованиями русского ученого биохимика (1912) установлено и подтверждено современными исследова­ниями, что фенольные соединения - «дыхательные хромогены», т. е. они учавствуют в процессе клеточного дыхания. Фенольные соединения выступают в качестве переносчиков водорода на конечных этапах процесса дыхания, а затем вновь окисляются специфическими ферментами оксидазами.

2. Фенольные соединения являются регуляторами роста, развития, и репродукции растений. При этом, оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.

3. Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышает устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).

Классификация фенольных соединений.

В основе классификации природных фенольных соединений лежит биогенетический принцип. В соответствии с современными представлениями о биосинтезе и, исходя из структурных особенностей углеродного скелета, все фенолы можно разбить на 8 групп:





8. (С6 – С3 – С6)n - Фенольные соединения 4. С6 – С3 –ряда – производные

полифенольные фенилпропана – оксикоричные

соединения кислоты, кумарины, хромоны

дубильные вещества

7. С6 – С2 – СС6 – С3 – С3 – СС6 – С3 – С6 – ряда

ряда – хиноны, ряда - лигнаны флавоноиды

производные

антрацена

Биосинтез фенольных соединений.

Биосинтез у различных групп фенольных соединений протекает по одной и той же принципиальной схеме, из общих предшественников и через сходные.промежуточные продукты.

Все фенольные соединения в растениях образуются из углеводов (ацетатно-малонатный путь) и продуктов их превращения и в процессе биосинтеза проходят шикиматный путь.

Биосинтезу многих фенольных соединений предшествует образование аминокислот – L-фенилаланина и L-тирозина.

Фенольные соединения образуются тремя путями, первые два и третий путь смешанный (отдельные части одного и того же соединения синтезируются разными путями).

Ацетатно-малонатный путь.

Установлен американскими учеными Берчем и Донованом в 1955 году. Предшественником является уксусная кислота, которая образуется из сахаров.

В результате ступенчатой конденсации остатков уксусной кислоты образуются поликетометиленовые кислоты. Присоединение происходит по типу «голова» - «хвост» при обязательном участии фермента Коэнзима А с промежуточным образованием ацетил-Коэнзима А, а затем малонил-Коэнзима и поэому называют ацетатно-малонатный путь). Циклизация поликетонов идет под действием фермента синтетазы.

Схема биосинтеза:

уксусная кислота поликетометиленовая кислота

ядро флороглюцина метилсалициловая кислота

Если наращивать цепочку до 16-ти углеродных атомов (8 остатков уксусной кислоты) образуется ядро антрацена.

По ацетатно-малонатному пути идет биосинтез простых фенолов и производных антрацена в грибах и лишайниках; антрахинонов группы хризацина колец А и С антрахинонов группы ализарина в высших растениях; кольца В молекуле флавоноидов, госсипола, содержащегося в коре корней хлопчатника.

Шикиматный путь.

Биосинтез через шикимовую кислоту, соединение близкое к ароматическим соединениям. В расшифровке этого пути биосинтеза большая роль принадлежит ученому Б. Дэвису (1951-55 гг).

Исходными продуктами биосинтеза служат фосфоенолпируват и эритрозо-4-фосфат, образующиеся в процессе гликолиза и пентозного цикла сахаров. В результате ряда ферментативных реакций и конденсации из них образуется шикимовая кислота.

Далее в процессе последовательных ферментативных реакций, протекающих при участии АТФ, присоединяется еще фосфоенолпируват, количество двойных связей увеличивается до двух - образуется префеновая кислота, затем до трех - образуется фенилпировиноградная кислота или оксифенилпировиноградная кислота. Далее под воздействием ферментов образуются ароматические аминокислоты - фенилаланинин и тирозин.

6. Фенолкарбоновые кислоты образуют сложные эфиры (депсиды).

Биосинтез, локализация и влияние условий внешней среды на

накопление простых фенольных соединений.

Биосинтез простых фенолов в высших растениях идет по шикиматному пути.

Фенольные соединения локализуются как в надземной части (листья и побеги толокнянки и брусники, так и в подземных органах (корневища папоротника мужского, корневища и корни родиолы розовой, кора корней хлопчатника).

В период бутонизации и цветения в сырье толокнянки и брусники накапливается агликон гидрохинон, который при сушке сырья подвергается окислению до хинонов – темных пигментов, поэтому сырье, заготовленное в период цветения чернеет.

Гликозид арбутин образуется осенью в период плодоношения и весной до цветения. В эти же сроки максимальное накопление гликозида салидрозида в сырье родиолы розовой, флороглюцидов в корневищах папоротника, госсипола в коре корней хлопчатника.

Накопление простых фенолов и их гликозидов идет в умеренном и холодном климате в растениях, произрастающих в лесной и тундровой зонах.

Методы выделения и идентификации.

Фенольные гликозиды извлекают из растительного материала этиловым и метиловым спиртами (96, 70 и 400), затем проводят очистку.

Выделение индивидуальных соединений проводят, как правило, методом адсорбционной хроматографии на полиамиде, силикагеле, целлюлозе.

В качестве элюирующих смесей используется вода и водный спирт, если адсорбентом служит полиамид или целлюлоза, либо различные смеси органических растворителей.

Фенольные гликозиды в ЛРС могут быть идентифицированы хроматографией в тонком слое сорбента или на бумаге. При обработке специфическими реактивами и сканировании в УФ-свете они проявляются в виде окрашенных пятен с соответствующими значениями Rf . Например, основной компонент подземных органов родиолы розовой розавин обнаруживается после хроматографии на пластинках в тонком слое сорбента в УФ-свете в виде фиолетового пятна. А другой компонент родиолы – салидрозид – проявляется диазотированным сульфацилом в виде красноватого пятна. Для идентификации исследуемых компонентов широко используют хроматографию в присутствии стандартных образцов.

Для индивидуальных веществ определяют температуру плавления, удельное вращение, снимают УФ и ИК спектры.

Для идентификации фенольных гликозидов широко используются химические превращения (гидролиз, ацетилирование, метилирование) и сравнение констант продуктов превращения с литературными данными для предполагаемого гликозида.

Фенольные гликозиды, со свободной гидроксильной группой дают все реакции, характерные для фенолов (реакция с железоаммонийными квасцами, с солями тяжелых металлов, с диазотированными ароматическими аминами и др.).

В случае, если фенольный гидроксил гликозилирован, как у салицина, реакции проводят после предварительного гидролиза гликозида кислотами либо ферментами. Эти же качественные реакции используют для обнаружения фенольных гликозидов на хроматограммах.

В случае хроматографирования в тонком слое силикагеля хроматограммы можно обработать еще и 4%-ной H2SO4 в абсолютном этиловом спирте. При этом фенольные гликозиды в зависимости от строения обнаруживаются в виде желтых, красных, оранжевых или голубых пятен.

При обработке хроматограмм раствором нитрата серебра и щелочью фенольные гликозиды обнаруживаются в виде коричневых пятен с различным оттенком.

. Методы анализа сырья, содержащего простые фенольные соединения.

Качественный и количественный анализ сырья основан на физических и химических свойствах.

Качественный анализ.

Фенольные соединения извлекают из растительного сырья водой, затем извлечения очищают от сопутствующих веществ, осаждая их растворами ацетата свинца. С очищенным извлечением выполняют качественные реакции.

Простые фенолы и агликоны фенологликозидов дают

характерные для фенольных соединений реакции:

С железоаммонийными квасцами

С солями тяжелых металлов

С диазотированными ароматическими аминами.

Специфические реакции (ГФ Х1):

- на арбутин (сырье толокнянки и брусники) используют цветные качественные реакции:

- с кристаллическим сульфатом записного железа.

Реакция основана на получении комплекса, изменяющего окраску от сиреневого до темно­го с дальнейшим образованием темно-фиолетового осадка.

С 10 %-ным раствором натрия фосфорномолибденовокислого в кислоте хлористоводородной.

Реакция основана на образовании комплексного соединения синего цвета.

- на салидрозид (сырье родиолы розовой):

- реакция азосочетания с диазотированным сульфацилом натрия с образованием азокрасителя вишнево-красного цвета.

салидрозид азокраситель

Количественное определение.

Для количественного определения простых фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

1. Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов не менее 1,8%.

2. Титриметрический йодометрический метод (основан на окислении иодом гидрохинона, полученного после извлечения и гидролиза арбутина) используется для определения содержания арбутина в сырье брусники и толокнянки. Проводят окисление агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната после получения очищенного водного извлечения и проведения кислотного гидролиза арбутина.

Гидролиз проводится концентрированной серной кислотой в присутствии цинковой пыли, чтобы выделившийся свободный водород предотвращал собственное окисление гидрохинона. В качестве индикатора используют раствор крахмала.

3. Спектрофотом етри ческий метод используется для определения содержания салидрозида в сырье родиолы розовой.

Метод основан на способности окрашенных азокрасителей поглощать монохроматический свет при длине волны 486 нм. Определяют оптическую плотность окрашенного раствора, полученного по реакции салидрозида с диазотированным сульфацилом натрия с помощью спектрофотометра. Рассчитывают содержание салидрозида с учетом удельного показателя поглощения ГСО салидрозида Е 1%/1см = 253.

Сырьевая база растений, содержащих простые фенольные соединения.

Сырьевая база достаточно хорошо обеспечена, потребность в сырье толокнянки, брусники, папоротника и родиолы розовой покрывается за счет дикорастущих растений. Виды хлопчатника широко культивируются.

Брусника обыкновенная встречается в лесной и тундровой зонах, толокнянка обыкновенная - в лесной зоне Европейской части страны, в Сибири и на Дальнем Востоке. Брусника произрастает в сосновых, еловых лесах, на влажных местах, по окраинам торфяных болот. Толокнянка в сухих сосновых беломошных и лиственных лесах, на вырубках, солнечных, песчаных почвах.

Щитовник (папоротник) мужской произрастает в лесной зоне Европейской части, в горах Кавказа, Памира, Алтая. Предпочитает тенистые хвойные и мелколиственные леса.

Ареал родиолы розовой охватывает полярно-арктическую, альпийскую и зону Европейской части, Урала, Дальнего Востока, горы юга Сибири, Алтай, Саяны) и Восточного Казахстана. Родиола розовая образует заросли и долинах рек, в редколесьях и на влажных лугах. Основные заросли - на Алтае.

В Средней Азии и на Кавказе широко культивируется хлопчатник, сем. Мальвовые.

Особенности сбора, сушки и хранения сырья,

Заготовку сырья брусники проводят в два срока - ранней весной до цветения и осенью (в период плодоношения). Сушка воздушно-теневая или искусственная - при температуре не более 50-60° С в тонком слое.

Сырье родиолы розовой («золотой корень») заготавливают в конце лета и осенью. Сушат при температуре 40 0С.

Сырье щитовника мужского собирают осенью, сушат в тени или в сушилках при температуре не более 40-50°С.

Сырье хлопчатника - кору корней - заготавливавливают после сбора урожая хлопка.

Хранят сырье по общему списку в сухом, хорошо проветриваемом помещении.

Срок годности - 3 года. Корневища щитовника мужского хранят 1 год.

Пути использования сырья, содержащего простые фенольные соединения.

Из лекарственного растительного сырья, содержащего фенологликозиды получают:

1. Экстемпоральные лекарственные формы:

- отвары (сырье брусники, толокнянки, родиолы розовой);

Сборы (сырье брусники, толокнянки, родиолы розовой).

2. Экстракционные (галеновые) препараты:

- экстракты:

Жидкий экстракт (корневища и корни родиолы розовой);

Густой эфирный экстракт (корневища папоротника мужского).

3. Препараты индивидуальных веществ:

3%-ный линимент госсипола и глазные капли - 0,1%-ный раствор госсипола в 0,07%-ном растворе натрия тетрабората (кора корней хлопчатника).

Медицинское применение сырья и препаратов,

1. Антимикробное, противовоспалительное, диуретическое (мочегонное) действие характерно для сырья брусники и толокнянки. Оно обусловлено наличием в сырье арбутина, который под влиянием ферментов желудочно-кишечного тракта расщепляется на гидрохинон и глюкозу. Гидрохинон, выделяясь с мочой, оказывает антимикробное и раздражающее действие на почки, что обусловливает диуретический эффект и противовоспалительное действие. Противовоспалительное действие обусловлено также наличием дубильных веществ.

Применяют лекарственные формы из сырья брусники и толокнянки для лечения воспалительных заболеваний почек, мочевого пузыря (циститы, пиелонефриты, пиелиты) и мочевыводящих путей. Отвары из листьев брусники часто используют для лечения заболеваний, связанных с нарушением минерального обмена: мочекаменной болезни, ревматизма, подагры, остеохондроза.

Побочное действие: при приеме больших доз возможно обострение воспалительных процессов, тошнота, рвота, понос. В связи с этим, прием лекарственных форм из сырья брусники и толокнянки рекомендуется проводить, в комплексе с другими растениями.

2. Противовирусное действие характерно для фенольных соединений коры корней хлопчатника. В медицинской практике препараты госсипола

Применение.

Низкомолекулярные фенольные соединения и их производные оказывают антисептическое и дезинфицирующее действие.

Фенольные гликозиды, содержащие арбутин, обладают антимикробной и диуретической активностью. Гликозид салидрозид, содержащийся в коре ивы и подземных органах родиолы розовой, оказывает стимулирующее и адаптогенное действие.

Кислота салициловая и ее производные известны как противовоспалительные, жаропонижающие и болеутоляющие средства. Так, вытяжка из коры ивы белой, содержащая салицин, издавна используется в народной медицине при лихорадочных состояниях, при воспалении слизистой ротовой полости и верхних дыхательных путей (в виде полоскания), при кожных заболеваниях (примочки).

Флороглюциды папоротника мужского действуют как антигельминтные средства.

при лечении опоясывающего лишая, простого герпеса, псориаза (линименты), герпетическом кератите (глазные капли).

3. Адаптогенное, стимулирующее и тонизирующее действие оказывают препараты корневищ и корней родиолы розовой. Препараты повышают работоспособность при утомлении, выполнении тяжелой физической работы, оказывают активирующее влияние на кору головного мозга. Применяют при неврозах, гипотонии, вегето-сосудистой дистонии, шизофрении.

Противопоказания: гипертония, лихорадка, возбуждение. Не назначают летом в жаркое время и во второй половине дня.

4. Антигельминтное (противоглистное) действие оказывают препараты корневищ папоротника мужского.

Густой экстракт представляет собой малоподвижную жидкость зеленого цвета, своеобразного запаха и вкуса. Выпускается в капсулах по 0,5 г. Препарат хранят в защищенном от света месте по списку Б.

Недопустимо применение масляных слабительных (масло касторовое), так как препарат растворяется в нем, всасывается в кровь и может быть отравление. Поэтому препарат используют только в стационарах под строгим наблюдением врача.

Фенолы - это соединœения, в молекулах которых содержится ароматическое (бензольное) кольцо, свя­занное с одной или несколькими группами -ОН. Большое содержание фенолов характерно для расти­тельной клетки.

В животном организме бензольные кольца не син­тезируются, а могут только преобразовываться, по­этому они должны постоянно поступать в организм с пищей. При этом многие фенольные соединœения в животных тканях выполняют важные функции (убихинон, адреналин, тироксин, серотонин и др.).

Сегодня в растениях уже найдено несколько тысяч разнообразных фенольных соединœе­ний. Их классифицируют по строению углеродного скелœета:

1. С 6 -фенолы

2. С 6 -С 1 -фенольные кислоты

3. С 6 -С 3 -гидроксикоричные кислоты и кумарины

4. С 6 -С 3 -С 6 -флавоноиды

5. Олигомерные фенольные соединœения.

6. Полимерные фенольные соединœения.

С 6 -Фенолы. Соединœения, бензольное кольцо которых связа­но с несколькими гидроксильными группами, на­зывают полифенолами.

Свободные фенолы в растениях встречаются ред­ко и в малых количествах. Так, фенол обнаружен в иглах и шишках сосны, в эфирном масле черной смородины, пирокатехин - в чешуе лука, в лис­тьях бадана, гидрохинон - в коре и листьях груши, в листьях бадана. Чаще встречаются произ-водные фенолов, где они связаны с какой-либо уг­леродной цепью или циклом. К примеру, урушиол и тетрагидроканнабинол.

Урушиол - это токсическое вещество из листьв сумаха. Тетрагидроканнабинол является галлюциногенным началом конопли.

При окислении фенолов об­разуются хиноны (бензохиноны). В свободном состоянии хиноны в растениях не встре­чаются, зато распространены их производные. К примеру, производными бензохинонов являются переносчики электронов в ЭТЦ фо­тосинтеза и дыхания - пластохинон и убихинон. К производным бензохинона относятся также жгучее вещество примулы - примин и красный пигмент мухомора - мускаруфин.

С 6 -С 1 -фенольные кислоты. В растениях распространены фенольные кислоты. Чаще они находятся в тканях в связанном состоя­нии и освобождаются при выделœении и гидролизе.

Салициловая кислота выделяется в качестве аллелопатического агента в окружающую среду. Вместе с тем, в настоящее время обнаружено ее регулирующее действие на ряд физиологических и биохимических процессов в растении (образование этилена, восстановление нитратов и др.).

Протокатеховая кислота обнару­жена в чешуях лука.

Ванильная и галловая кислоты встречаются в древесинœе. Последняя входит в состав некоторых дубильных веществ и может образовывать диме-ры - дигалловую кислоту, в молекуле которой сложноэфирной связью соединœены 2 остатка гал­ловой кислоты.

Обнаружены в растениях производные фенольных кислот - альдегиды и спирты. К примеру, в коре ивы при­сутствует салициловый спирт. Но особенно известен ванилин - ванильный альдегид. Он обладает очень приятным запахом и в виде гликозида - глюкованилина содержится в плодах и ветвях ва­нильного дерева. Гликозид и сам ванилин широко применяются в кондитерской, мыловаренной и пар­фюмерной промышленности.

Фенольные кислоты могут связываться сложноэфирными связями с сахарами, чаще с глюко­зой. Из ряда растений (ревень, эвкалипт) выделœен гликогаллин, в котором карбоксильная группа гал­ловой кислоты связана с гликозидным гидроксилом глюкозы.

С 6 -С 3 -гидроксикоричные кислоты и кумарины. Широко распространены в растениях гидроксикоричные кислоты. Обычно они находятся в свя­занном состоянии, а в свободном, кроме кофейной, встречаются редко.

Показано, что цис-изомеры гидроксикоричных кислот являются активаторами ростовых процес­сов растений, а транс-изомеры такими свойствами не обладают.

В растениях встречаются гидроксикоричные спирты - производные соответствующих кислот: кумаровой - кумаровый спирт, феруловой - ко-нифериловый спирт, синаповой - синаповый спирт. Спирты обычно не накапливаются, а, оче­видно, используются на образование лигнина, мо­номерами которого они являются.

Гидроксикоричные кислоты могут образовы­вать сложные эфиры с органическими кислота­ми алифатического ряда. Так, кофейная кислота образует эфиры с яблочной и винной кислотами. Первый эфир называют фазеолиновой кислотой. Она присутствует в листьях фасоли. Второй - цикориновой кислотой. Она найдена в листьях цикория.

В растениях распространены эфиры гидроксикоричных кислот и сахаров, чаще глюкозы. Так, в цветках петунии и львиного зева обнаружены эфи­ры кофейной, кумаровой, феруловой кислот, а в злаках вообще большинство гидроксикоричных кислот представлены эфирами. Вместе с тем, гидро-ксикоричные кислоты входят в состав полисаха­ридов и белков. К примеру, феруловая кислота най­дена в ксиланах пшеничной муки и в полисахари­дах ананасов.

Кумарины - это лактоны, которые образуются при замыкании кольца между гидроксильной и карбоксильной группами в молекуле гидроксико-ричной кислоты.

Кумарин - бесцветное кристаллическое веще­ство с приятным запахом свежескошенного сена. В свободном виде кумарин в растениях не встреча­ется. Он обычно содержится в виде гликозидов (цве­ты и листья донника). У травянистых растений в клеточном соке присутствует гликозид, содержа-щий орто-кумаровую кислоту. При сенокосœе рас­тительные ткани повреждаются, нарушается про­ницаемость мембран. Гликозиды из клеточного сока соприкасаются с ферментами цитоплазмы. От гли­козидов отщепляются сахара, и кумаровая кисло­та после транс-цис-изомеризации замыкается в лактон-кумарин. При этом вянущая трава приоб­ретает запах сена.

В растениях часто встречаются гидроксилированные кумарины в составе гликозидов. К примеру, эскулетин из околоплодника конского каштана и скополетин из корней скополии японской. Оба эти кумарина обладают Р-витаминной активностью и используются в медицинœе как капилляроукрепля-ющие средства.

В доннике белом найден дикумарин, который препятствует свертыванию крови. Этот и другие дикумарины используются как лекарственные пре­параты, предотвращающие образование тромбов.

С 6 -С 3 -С 6 -флавоноиды . Это одна из наиболее разнообразных и распространенных групп фенольных соединœений. В корне строения молекул флавоноидов лежит структура флавана, который состоит из двух бен­зольных колец и одного гетеро­циклического (пиранового).

Флавоноиды делят на несколько групп.

1. Катехины.

2. Антоцианы.

3. Халконы.

Катехины - наиболее восстановленные флавоноиды. Οʜᴎ не образуют гликозидов. Катехин впер­вые был выделœен из древесины Acacia catechu, от­сюда его название. Катехины найдены у более чем 200 видов растений. Среди катехинов наиболее известны катехин и галлокатехин.

Οʜᴎ могут образовывать эфиры с галловой кис­лотой - катехингаллаты и галлокатехингаллаты. Катехины содержатся во многих плодах (яблоки, груши, айва, вишни, сливы, абрикосы, земляни­ка, ежевика, смородина, брусника, виноград), в бобах какао, зернах кофе, в коре и древесинœе мно­гих деревьев (ива, дуб, сосна, пихта͵ кедр, кипа­рис, акация, эвкалипт). Особенно много катехинов в листьях и молодых побегах чая (до 30%). Окислительные превращения катехинов играют важную роль в чайном производстве и виноделии. Продукты окисления, а это в основном димеры катехинов, имеют приятный слабовяжущий вкус и золотисто-коричневую окраску. Это определяет цвет и вкусовые качества конечного продукта. При этом катехины обладают высокой Р-витаминной активностью, укрепляют капилляры и нормализу­ют проницаемость стенок сосудов. Такой же ак­тивностью обладают и димеры катехинов в чае. Катехины в качестве мономеров входят в состав конденсированных дубильных веществ.

Антоцианы - важнейшие пигменты растений. Οʜᴎ окрашивают лепестки цветков, плоды, иногда листья в голубой, синий, розовый, красный, фио­летовый цвета с различными оттенками и перехо­дами. Все антоцианы - гликозиды. Их агликонами являются антоцианидины. Антоцианы раство­римы в воде и содержатся в клеточном соке.

Сегодня известно более 20 антоциа­нидинов, но наиболее широко распространены 4: пеларгонидин, цианидин, дельфинидин и мальви-дин (метилированное производное дельфинидина).

В качестве моносахаридов в антоцианах встречаются глюкоза, галактоза, рамноза, ксилоза, реже арабиноза, а в качестве дисахаридов - чаще всœего рутиноза, софороза, самбубиоза. Иногда антоцианы содержат трисахариды, обычно разветвленные. К примеру, в ягодах сморо­дины и малины найден антоциан, в котором с цианидином связан разветвленный трисахарид.

Окраска антоцианов зависит от ряда факторов:

1. концентрации антоцианов в клеточном соке;

2. рН клеточного сока;

3. комплексообразования антоцианов с катионами;

4. копигментации - смеси антоцианов и при­сутствия в клеточном соке других веществ фенольной природы;

5. сочетания с окраской пластидных пигментов.

Рассмотрим эти факторы подробнее.

1. Концентрация антоцианов в клеточном соке может меняться в широком диапазоне - от 0,01 до 15%. К примеру, в обычном синœем васильке со­держится 0,05% антоциана цианина, а в темно-пурпурном его 13-14%.

2. По причине того, что в молекулах антоциана име­ется свободная валентность, окраска может менять­ся исходя из величины рН. Обычно в кислой среде антоцианы имеют красный цвет различной интенсивности и оттенков, а в щелочной - синий. Такие изменения в окраске антоцианов можно наблюдать, добавляя кислоту или щелочь к окра­шенному соку смородины, вишни, столовой свеклы или краснокачанной капусты. В природе же резких изменений рН клеточного сока не происходит, и данный фактор в окраске антоцианов большой роли не игра­ет. Можно только заметить, что некоторые розовые и красные цветы при завядании синœеют. Это указы­вает на изменение рН в отмирающих клетках.

3. Большое значение в окраске цветков и плодов имеет способность антоцианов к хелатообразованию с ионами металлов. Это хорошо видно на примере василька и розы. В их лепестках содержится один и тот же антоциан - цианин. В лепестках синœего василька цианин образует комплекс с ионами Fe (4 молекулы цианина связаны с одним атомом Fe). В лепестках красных роз присутствует свободный цианин. Другой пример.
Размещено на реф.рф
В случае если обычную гортензию с розовыми цветками выращивать на минœеральной среде, содержащей алюминий и молибден, то цвет­ки приобретают синюю окраску.

4. Обычно в клеточном соке многих цветков и плодов присутствует не один, а несколько пиг­ментов. При этом окраска зависит от их смеси, и ее называют копигментацией. Так, окраска пло­дов черники обусловлена копигментацией дельфинина и мальвина. В фиолетовых цветках картофе­ля найдено 10 различных антоцианов.

Цветовой рисунок лепестков многих цветков оп­ределяется или локальным увеличением концент­рации одного пигмента (наперстянка), или наложе­нием дополнительного пигмента на основной (в цен­тре цветков мака на общем фоне пеларгонина на­кладывается высокая концентрация цианина).

На окраску влияет также копигментация анто­цианов с другими веществами, к примеру, с таннинами. Так, пурпурные и темно-красные розы содер­жат один и тот же цианин, но у темно-красных он копигментирован с большим количеством таннина.

5. При сочетании синих антоцианов клеточного сока и желто-оранжевых каротиноидов хромопла­стов получается коричневая окраска лепестков не­которых цветков.

Табл. Некоторые антоцианы растений

Антоциан Агликон Сахар Растения
Пеларгонин Пеларгонидин 2 глюкозы Пеларгония, астры
Цианин Цианидин 2 глюкозы Розы, васильки
Керацианин Цианидин Глюкоза, рамноза Вишни
Пруницианин Цианидин Рамноза, глюкоза Сливы
Идаин Цианидин Галактоза Брусника
Хризантемин Цианидин Глюкоза Астры, черника, бузина
Мальвин Мальвидин 2 глюкозы Мальва
Энин Мальвидин Глюкоза Виноград
Дельфиний Дельфинидин Рамноза, глюкоза Шпорник
Вигланин Дельфинидин Глюкоза, рамноза Мать-и-мачеха

Халконы , или антохлоры, - это флавоноиды с раскрытым гетероциклом. Οʜᴎ придают лепест­кам цветков желтую окраску. Их распространение ограничено девятью семействами. Встречаются они в виде гликозидов. Халконами, к примеру, явля­ются изосалипурпозид из желтых цветков гвозди­ки, флоридзин из коры и листьев яблони. Флорид­зин является ингибитором роста яблони. При при­еме внутрь человеком он вызывает одноразовое интенсивное выделœение глюкозы в кровь - ʼʼфлоридзиновый диабетʼʼ.

Олигомерные фенольные соединœения. Сюда относятся лишайниковые кислоты. Οʜᴎ обра­зуются в лишайниках из двух и более остатков орселлиновой кислоты. Леканоровая и эверновая кислоты состоят из двух остатков орселлиновой кислоты. Эверновая кислота - основной компо­нент комплекса кислот эвернии (ʼʼдубовый мохʼʼ), который используется в парфюмерии как душис­тое вещество и одновременно как фиксатор при изготовлении лучших сортов духов.

Среди лишайниковых кислот есть окрашенные. Οʜᴎ придают разнообразный цвет лишайникам - желтый, оранжевый, красный, фиолетовый. Лишайник уснея содержит усниновую кислоту, которая является эффективным бактерицидным средством.

Встречаются в коре, древесинœе, плодах и листь­ях многих растений димеры гидроксикоричных спиртов. Образуют олигомеры и флавоноиды, особенно катехины. Димеры катехина най­дены в яблоках, каш­танах, боярышнике, бо­бах какао, в древесинœе эвкалипта.

Полимерные фенольные соединœения. К полимерным фенольным соединœениям отно­сятся дубильные вещества, или таннины, лигнины и меланины.

Дубильные вещества, или танины. Свое название они получили благодаря способно­сти дубить шкуру животных, превращая ее в кожу. Дубление основано на взаимодействии дубильных веществ с белком кожи -коллагеном. При этом об­разуются многочисленные водородные связи между белком и таннином.

Природные дубильные вещества представляют из себясложную смесь близких по составу соединœе­ний с молекулярной массой 500-5000.

Много дубильных веществ содержится в коре и дре­весинœе дуба, эвкалипта͵ древесинœе каштана, в кор­невище щавеля, ревеня, в листьях сумаха. Их много в коре и древесинœе бобовых, миртовых, розовых. Осо­бенно высоким содержанием дубильных веществ от­личаются галлы, которые образуются на листьях при повреждении их орехотворкой (до 50-70%).

Дубильными (чаще пищевыми дубильными) на­зывают также более низкомолекулярные вещества, обладающие приятным вяжущим вкусом, но не способные к настоящему дублению. Οʜᴎ присут­ствуют во многих плодах (айва, яблоки, хурма, виноград), в листьях чая.

Дубильные вещества находят самое широкое при­менение не только в кожевенной промышленности. Их используют в производстве пластмасс, связующих веществ при изготовлении фанеры и плит из опи­лок, в качестве протравы при крашении. Οʜᴎ нахо­дят применение в установках для кипячения воды в качестве стабилизаторов коллоидов, для регули­рования вязкости растворов при бурении скважин.

Использование таннинов в виноделии связано с их ингибирующим действием на ферменты и мик­роорганизмы, что предотвращает помутнение вин и улучшает их качество. С помощью чайного таннина стабилизируют бетацианин - пищевой крас­ный краситель, получаемый из столовой свеклы.

В медицинœе дубильные вещества применяются как вяжущие, бактерицидные, противолучевые и противоопухолевые средства.

Лигнин входит в состав клеточных оболочек тканей древесины. Он откладывается между мик­рофибриллами целлюлозы, что придает клеточным оболочкам твердость, прочность. При этом при этом нарушается связь между клетками, что приводит к отмиранию живого содержимого, в связи с этим лиг-нификация является заключительным этапом он­тогенеза клетки.

Лигнин - аморфное вещество, нерастворимое в воде, органических растворителях и даже в кон­центрированной кислоте.

Лигнин имеет еще одно важное свойство: он ус­тойчив к микроорганизмам. Лишь немногие мик­роорганизмы, и то очень медленно, разлагают его.

Лигнин - трехмерный полимер, мономерами которого являются гидроксикоричные спирты. Так, у хвойных в лигнинœе преобладает ко-нифериловый спирт, у злаков - кумаровый, у мно­гих лиственных деревьев - синаповый.

В целлюлозно-бумажной промышленности и на гидролизных заводах накапливается в качестве отходов большое количество лигнина. Его исполь­зуют для получения активированного угля, пласт­масс, синтетических смол.

Меланины - полимеры фенольной природы, которые являются продуктом окисления тирози­на. Их строение еще до конца не выяснено.

Меланины имеют черный или коричнево-черный цвет. Их образованием объясняется быстрое потем­нение поверхности разрезанного яблока, клубня кар­тофеля, некоторых грибов. Меланины присутствуют и в животных организмах, обусловливая окраску шерсти и волос. При этом растительные и животные меланины отличаются по составу мономеров. Расти­тельные меланины при гидролизе образуют пирокатехин, а животные - дигидроксииндол. Ины­ми словами, растительные меланины, в отличии от животных являются безазотистыми веществами.

Функции фенольных соединœений в растении. 1. Фенолы участвуют в окислительно-восстано­вительных процессах: происходит превращение фенолов в хиноны и наоборот с участием фермента полифенолоксидазы. При этом попутно нефермен­тативным путем могут окисляться различные со­единœения (аминокислоты, органические кисло­ты, фенолы, цитохромы и др.).

2. Некоторые фенольные соединœения являются переносчиками электронов и протонов в ЭТЦ фо­тосинтеза и дыхания (пластохинон, убихинон).

3. Ряд фенолов оказывает влияние на ростовые процессы растений, иногда активирующее, чаще ингибирующее. Это влияние бывает опосредовано действием на фитогормоны. Так, известно, что одни фенольные соединœения необходимы при синтезе ауксина, другие - при его распаде. Для образова­ния этилена крайне важно присутствие эфи­ра кумаровой кислоты. Установлено, что при стрес­се растения накапливают большое количество фе-нолов, что приводит к ингибированию ростовых процессов и повышению их устойчивости к небла­гоприятным условиям.

4. Фенолы выполняют в растениях защитную функцию: Фенольные соединœения придают расте­ниям устойчивость к заболеваниям. К примеру, ус­тойчивость к ряду болезней лука с окрашенной ше­лухой связана с присутствием в нем протокатеховой кислоты. При механических повреждениях ра­стительных тканей в клетках накапливаются фе­нолы и, конденсируясь, образуют защитный слой. Некоторые растения в ответ на поражение пато­генными грибами образуют защитные вещества - фитоалексины, многие из которых имеют фенольную природу.

5. Многие фенолы являются антиоксидантами и защищают липиды мембран от окислительного разрушения. Некоторые из них используют в пи­щевой промышленности для предохранения жиров от прогоркания (эфиры галловой кислоты, флавоноиды и др.).

6. Очень важна роль фенольных соединœений в процессе размножения растений. Это не только связано с окраской цветков и плодов, но и с непос­редственным участием фенолов в оплодотворении. Так, в процессе оплодотворения водоросли хлами­домонады и высшего растения форзиции прини­мают участие флавоноиды.

7. Фенолы могут выступать у некоторых расте­ний в качестве аллелопатических веществ. Напри­мер, таким веществом у дуба должна быть салици­ловая кислота.

8. Некоторые фенолы действуют как активато­ры или ингибиторы на отдельные процессы и фер­менты (делœение клеток, синтез белка, окислитель­ное фосфррилирование и т. д.).

Фенольные соединения - понятие и виды. Классификация и особенности категории "Фенольные соединения" 2017, 2018.

text_fields

text_fields

arrow_upward

Природные фенольные соединения вещества растительного происхождения, содержащие одно или несколько ароматических колец с одной или несколькими свободными или связанными гидроксильными группами.

Фенольные соединения имеют универсальное распространение в растительном мире. Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3 % массы органического вещества растений, а в некоторых случаях — до 10 % и более. Фенольные соединения обнаружены также в грибах, лишайниках, водорослях. Животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать.

В растениях фенольные соединения играют очень важную роль. Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.

  1. Исследованиями русского ученого-биохимика В.И. Палладина (1912 г., Санкт-Петербург) установлено и подтверждено современными исследованиями, что фенольные соединения участвуют в процессе клеточного дыхания. Фенольные соединения выступают в качестве акцепторов (переносчиков) водорода на конечных этапах процесса дыхания, а затем вновь окисляются специфическими ферментами оксидазами.
  2. Фенольные соединения являются регуляторами роста, развития и репродукции растений. При этом оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.
  3. Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышают устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).

Классификация фенольных соединений

text_fields

text_fields

arrow_upward

В основу классификации природных фенольных соединений положен биогенетический принцип. В соответствии с современными представлениями о биосинтезе и, исходя из структурных особенностей углеродного скелета, можно выделить следующие классы растительных фенолов.

Биосинтез фенольных соединений

text_fields

text_fields

arrow_upward

Биосинтез у различных групп фенольных соединений протекает по одной и той же принципиальной схеме, из общих предшественников и через сходные промежуточные продукты.

Механизм биосинтеза фенольных соединений был расшифрован в 60-х годах XX века в результате:

  • применения меченых изотопами атомов углерода С 14 и кислорода — О 18 ;
  • неклеточных систем;
  • различных генетических методов.

Биосинтез бензольного кольца в структуре фенольных соединений идет двумя путями:

  1. ацетатно-малонатный;
  2. шикиматный.

Фенольные соединения образуются тремя путями: первые два и третий путь — смешанный (отдельные части одного и того же соединения синтезируются разными путями).

  1. Ацетатно-малонатный путь.

Установлен американскими учеными Берчем и Донованом в 1955 году. Предшественником является кислота уксусная, которая образуется при гликолизе сахаров.

В результате альдольной ступенчатой конденсации остатков кислоты уксусной образуются поликетометиленовые кислоты. Присоединение происходит по типу «голова» — «хвост» при обязательном участии фермента коэнзима А с промежуточным образованием ацетил-коэнзима А, а затем малонил-коэнзима А (поэтому называют ацетатно-малонатный путь.

Циклизация поликетонов идет под действием фермента синтетазы.

Если наращивать цепочку до 16-ти углеродных атомов (8 остатков кислоты уксусной) образуется ядро антрацена:

По ацетатно-малонатному пути идет биосинтез простых фенолов и производных антрацена в грибах и лишайниках; антрахинонов группы хризацина, колец А и С антрахинонов группы ализарина у растений; кольца А в молекуле флавоноидов; госсипола, содержащегося в коре корней хлопчатника.

  1. Шикиматный путь.

Биосинтез идет через кислоту шикимовую, соединение близкое к ароматическим соединениям. В расшифровке этого пути биосинтеза большая заслуга принадлежит ученому Б. Дэвису (1951-55 гг.).

Исходными продуктами биосинтеза служат фосфоенолпируват и эритрозо4-фосфат, образующиеся в процессе гликолиза и пентозного цикла сахаров. В результате ряда ферментативных реакций и конденсации из них образуется кислота шикимовая.

Далее в процессе последовательных ферментативных реакций, протекающих при участии АТФ, присоединяется еще фосфоенолпируват, количество двойных связей увеличивается до двух — образуется кислота префеновая, а затем до трех — образуется кислота фенилпировиноградная или кислота пара -гидроксифенилпировиноградная. Далее под воздействием ферментов трансаминаз образуются ароматические аминокислоты — фенилаланин и тирозин.

При участии ферментов аммиаклиаз от аминокислот отщепляется аммиак, и возникают соответственно кислоты коричная и пара -гидроксикоричная.

Это исходные продукты синтеза пара — и орто -фенолов в растениях, кумаринов, хромонов, лигнанов, кольца В в молекуле флавоноидов, кольца В антрахинонов группы ализарина у растений, гидролизуемых дубильных веществ.

  1. Смешанный путь.

По смешанному пути синтезируются флавоноиды и антрахиноны, производные ализарина. Флавоноиды являются источником синтеза конденсированных дубильных веществ.

ЛЕКАРСТВЕННЫЕ РАСТЕНИЯ И СЫРЬЕ, СОДЕРЖАЩИЕ ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ (общая характеристика).

1. Понятие о фенольных соединениях, распространение в растительном мире.

2. Роль фенольных соединений для жизнедеятельности растений.

3. Классификация фенольных соединений.

4. Биосинтез фенольных соединений.

Понятие о фенольных соединениях, распространение в растительном мире, роль фенольных соединений для жизнедеятельности растений.

Растения способны синтезировать и накапливать огромное количество соединений фенольной природы.

Фенолы – это ароматические соединения, содержащие в своей молекуле бензольное ядро с одной или несколькими гидроксильными группами.

Соединения, содержащие несколько ароматических колец, с одной или несколькими гидроксильными группами называются полифенолами .

Они встречаются в различных частях многих растений – в покровных тканях в плодах, проростках, листьях, цветках и

Придают им окраску и аромат пигменты фенольной природы - антоцианы;

большинство полифенолов –

Активные метаболиты клеточного обмена,

Играют важную роль в различных физиологических процессах, таких как, фотосинтез, дыхание, рост, устойчивость растений к инфекционным болезням, рост и репродукция;

Защищают растения от патогенных микроорганизмов и грибковых заболеваний.

Распространение.

Из фенолокислот часто встречается галловая кислота и значительно реже - салициловая (фиалка трехцветная). Фенолокислоты и их гликозиды содержатся в родиоле розовой.

К группе фенолов с одним ароматическим кольцом относятся простые фенолы, фенолокислоты, фенолоспирты, оксикоричные кислоты .

Фенологликозидами называется группа гликозидов, агликоном которых являются простые фенолы, оказывающие дезинфицирующее действие на дыхательные пути, почки и мочевые пути.

Фенологликозиды в природе распространены довольно широко. Встречаются в семействах ивовых, брусничных, камнеломковых, толстянковых и др., имеются в листьях толокнянки и брусники.



Природные фенолы часто проявляют высокую биологическую активность:

Препараты на основе фенольных соединений широко используются в качестве

Противомикробных, противовоспалительных, кровоостанавливающих, желчегонных, диуретических, гипотензивных, тонизирующих, вяжущих и слабительных средств.

Фенольные соединения имеют универсальное распространение в растительном мире. Они свойственны каждому растению и даже каждой растительной клетке. В настоящее время известно свыше двух тысяч природных фенольных соединений. На долю веществ этой группы приходится до 2-3% массы органического вещества растений, а в некоторых случаях - до 10% и более. Фенольные соединения обнаружены как в низших; грибах, мхах, лишайниках, водорослях, так и в высших споровых (папоротниках, хвощах) и цветковых растениях. У высших растений - в листьях, цветках, плодах, подземных органах.

Синтез фенольных соединений происходит только в растениях, животные потребляют фенольные соединения в готовом виде и могут их только преобразовывать

В растениях фенольные соединения играют важную роль.

1. Они являются обязательными участниками всех метаболических процессов: дыхания, фотосинтеза, гликолиза, фосфорилирования.

Исследованиями русского ученого биохимика В.И.Палладина (1912) установлено и подтверждено современными исследова­ниями, что фенольные соединения - «дыхательные хромогены»,т.е. ониучавствуют в процессе клеточного дыхания. Фенольные соединения выступают в качестве переносчиков водорода на конечных этапах процесса дыхания, азатем вновь окисляются специфическими ферментами оксидазами.

2. Фенольные соединения являются регуляторами роста, развития, и репродукции растений. При этом, оказывают как стимулирующее, так и ингибирующее (замедляющее) действие.

3. Фенольные соединения используются растениями как энергетический материал, выполняют структурную, опорную и защитную функции (повышает устойчивость растений к грибковым заболеваниям, обладают антибиотическим и противовирусным действием).

Классификация фенольных соединений.

В основе классификации природных фенольных соединений лежит биогенетический принцип. В соответствии с современными представлениями о биосинтезе и, исходя из структурных особенностей углеродного скелета, все фенолы можно разбить на 8 групп: